Bioinspiration & Biomimetics最新文献

筛选
英文 中文
Dynamic modelling and predictive position/force control of a plant-inspired growing robot. 植物启发生长机器人的动态建模和位置/力预测控制。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-12 DOI: 10.1088/1748-3190/ad8e25
Abdonoor Kalibala, Ayman A Nada, Hiroyuki Ishii, Haitham El-Hussieny
{"title":"Dynamic modelling and predictive position/force control of a plant-inspired growing robot.","authors":"Abdonoor Kalibala, Ayman A Nada, Hiroyuki Ishii, Haitham El-Hussieny","doi":"10.1088/1748-3190/ad8e25","DOIUrl":"10.1088/1748-3190/ad8e25","url":null,"abstract":"<p><p>This paper presents the development and control of a dynamic model for a plant-inspired growing robot, termed the 'vine-robot', using the Euler-Lagrangian method. The unique growth mechanism of the vine-robot enables it to navigate complex environments by extending its body. We derive the dynamic equations of motion and employ model predictive control to regulate the task space position, orientation, and interaction forces. Simulation experiments are conducted to evaluate the performance of the proposed model and control strategy. The results demonstrate that the model effectively achieves sub-millimeter precision in the position control in both static and time varying refrence trajectroies, and sub micronewton in force control.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired cooperation in a heterogeneous robot swarm using ferrofluid artificial pheromones for uncontrolled environments. 利用铁流体人工信息素在不受控制的环境中实现异质机器人群的生物启发合作。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-11 DOI: 10.1088/1748-3190/ad8d28
Juan Carlos Brenes-Torres, Cindy Calderón-Arce, Francisco Blanes, José Simo
{"title":"Bioinspired cooperation in a heterogeneous robot swarm using ferrofluid artificial pheromones for uncontrolled environments.","authors":"Juan Carlos Brenes-Torres, Cindy Calderón-Arce, Francisco Blanes, José Simo","doi":"10.1088/1748-3190/ad8d28","DOIUrl":"10.1088/1748-3190/ad8d28","url":null,"abstract":"<p><p>This article presents a novel bioinspired technology for the cooperation and coordination of heterogeneous robot swarms in uncontrolled environments, utilizing an artificial pheromone composed of magnetized ferrofluids. Communication between different types of robots is achieved indirectly through stigmergy, where messages are inherently associated with specific locations. This approach is advantageous for swarm experimentation outside controlled laboratory spaces, where localization is typically managed through centralized camera systems (e.g. infrared, RGB). Applying pheromone principles has also proven beneficial for various swarm behaviors. We introduce a detection methodology for the artificial ferrofluid pheromone using low-cost magnetic sensors, along with signal processing and parameter characterization. Experiments involved a heterogeneous swarm consisting of two types of robots: one equipped with camera and image processing capabilities and the other with basic sensor technologies. Validation in multiple uncontrolled environments (with varying floor surfaces, wind, and light conditions) demonstrated successful cooperation among robots with differing technological complexities using the proposed technology.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and electroadhesion properties of parylene-coated carbon fiber arrays. 聚对苯二甲酸丁二酯涂层碳纤维阵列的制造和电粘附特性。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-08 DOI: 10.1088/1748-3190/ad8c88
Lan Ai, Tingting Liu, Mingmin Zai, Lizhen Hou, Shiliang Wang
{"title":"Fabrication and electroadhesion properties of parylene-coated carbon fiber arrays.","authors":"Lan Ai, Tingting Liu, Mingmin Zai, Lizhen Hou, Shiliang Wang","doi":"10.1088/1748-3190/ad8c88","DOIUrl":"https://doi.org/10.1088/1748-3190/ad8c88","url":null,"abstract":"<p><p>Parylene-coated carbon fiber (CF) arrays with tunable inclination angles and heights were fabricated using oxygen plasma etching of composite wafers with embedded parallel CFs, followed by parylene coating via chemical vapor deposition. The effective elastic modulus of the CF arrays was found to decrease approximately in proportion to the square of the fiber length (5-60<i>μ</i>m), with the parylene coating (∼2<i>μ</i>m) further slightly reducing the modulus. Both experimental measurements and finite element simulations indicated that CF arrays with inclination angles below 75° exhibit ideal contact with glass wafers during electrostatic adhesion. However, the measured electrostatic adhesion between CF arrays and A4 paper was significantly lower than the predicted value for ideal contact, likely due to the porous nature of the paper. Electrostatic chuck prototypes based on the parylene-coated CF arrays demonstrated effective pick-and-place capabilities for A4 paper, plastic films, and glass wafers at voltages ranging from 500 to 900 V, without causing surface damage or leaving residue. These results highlight the potential of the parylene-coated CF arrays for applications in high-precision manufacturing and automated handling systems.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller. 通过基于 CPG 控制器的张力反馈,增强肌肉骨骼四足运动的姿势稳定性。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-07 DOI: 10.1088/1748-3190/ad839e
Hiroaki Tanaka, Ojiro Matsumoto, Takumi Kawasetsu, Koh Hosoda
{"title":"Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller.","authors":"Hiroaki Tanaka, Ojiro Matsumoto, Takumi Kawasetsu, Koh Hosoda","doi":"10.1088/1748-3190/ad839e","DOIUrl":"10.1088/1748-3190/ad839e","url":null,"abstract":"<p><p>A central pattern generator (CPG)-based controller enhances the adaptability of quadrupedal locomotion, for example, by controlling the trunk posture. The conventional CPG-based controllers with attitude control often utilized the posture angle as feedback information. However, if the robot's body is as soft as a musculoskeletal structure, it can detect the over-tilting of the trunk based on proprioceptive information of the muscles. In general, proprioceptive information such as muscle tension changes more rapidly than posture angle information. Therefore, a feedback loop based on proprioceptive information has great potential to respond to sudden disturbances that occur during locomotion over uneven terrain. In this research, we proposed a CPG-based controller utilizing the tension of soft pneumatic artificial muscles (PAMs). Musculoskeletal quadruped robots driven by PAMs are so soft, which prevents over-tilting of the trunk because the soft leg acts like a suspension. In addition, tension, one of the proprioceptive information of PAMs, exhibits high sensitivity to changes in trunk posture because the soft body's motion easily is affected by over-tilting of the trunk. To validate the efficacy of the proposed controller, we conducted numerical simulations with a simple quadruped model and experiments with a musculoskeletal quadruped robot. As a result, the tension feedback is not effective for posture stabilization on flat terrain whereas it is effective on uneven terrain. Moreover, the tension feedback improved the running velocity over uneven terrain. These results will enhance the locomotion capability of musculoskeletal quadruped robots, advancing their practical application.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed feathers with embedded aerodynamic sensing. 嵌入空气动力传感技术的 3D 打印羽毛。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-06 DOI: 10.1088/1748-3190/ad87a0
Ruowen Tu, Rémy A Delplanche, Bret W Tobalske, Daniel J Inman, Henry A Sodano
{"title":"3D printed feathers with embedded aerodynamic sensing.","authors":"Ruowen Tu, Rémy A Delplanche, Bret W Tobalske, Daniel J Inman, Henry A Sodano","doi":"10.1088/1748-3190/ad87a0","DOIUrl":"10.1088/1748-3190/ad87a0","url":null,"abstract":"<p><p>Bird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved. Here, we present our 3D printed artificial feathers consisting of hierarchical vane structures with feature dimensions spanning from 10<sup>-2</sup>to 10<sup>2</sup>mm, which have remarkable structural, mechanical and aerodynamic resemblance to natural feathers. The multi-step, multi-scale 3D printing process used in this work can provide scalability for the fabrication of artificial feathers tailored to the specific size requirements of aircraft wings. Moreover, we provide the printed feathers with embedded aerodynamic sensing ability through the integration of customized piezoresistive and piezoelectric transducers for strain and vibration measurements, respectively. Hence, the 3D printed feather transducers combine the aerodynamic advantages from the hierarchical feather structure design with additional aerodynamic sensing capabilities, which can be utilized in future biomechanical studies on birds and can contribute to advancements in high-performance adaptive MAVs.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotic feet modeled after ungulates improve locomotion on soft wet grounds. 仿照蹄类动物的机器人脚改善了在松软潮湿地面上的运动能力。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-04 DOI: 10.1088/1748-3190/ad839c
S Godon, A Ristolainen, M Kruusmaa
{"title":"Robotic feet modeled after ungulates improve locomotion on soft wet grounds.","authors":"S Godon, A Ristolainen, M Kruusmaa","doi":"10.1088/1748-3190/ad839c","DOIUrl":"https://doi.org/10.1088/1748-3190/ad839c","url":null,"abstract":"<p><p>Locomotion on soft yielding grounds is more complicated and energetically demanding than on hard ground. Wet soft ground (such as mud or snow) is a particularly difficult substance because it dissipates energy when stepping and resists extrusion of the foot. Sinkage in mud forces walkers to make higher steps, thus, to spend more energy. Yet wet yielding terrains are part of the habitat of numerous even-toed ungulates (large mammals with split hooves). We hypothesized that split hooves provide an advantage on wet grounds and investigated the behavior of moose legs on a test rig. We found that split hooves of a moose reduce suction force at extrusion but could not find conclusive evidence that the hoof reduces sinkage. We then continued by designing artificial feet equipped with split-hoof-inspired protuberances and testing them under different conditions. These bio-inspired feet demonstrate an anisotropic behavior enabling reduction of sinkage depth up to 46.3%, suction force by 47.6%, and energy cost of stepping on mud by up to 70.4%. Finally, we mounted these artificial feet on a Go1 quadruped robot moving in mud and observed 38.7% reduction of the mechanical cost of transport and 55.0% increase of speed. Those results help us understand the physics of mud locomotion of animals and design better robots moving on wet terrains. We did not find any disadvantages of the split-hooves-inspired design on hard ground, which suggests that redesigning the feet of quadruped robots improves their overall versatility and efficiency on natural terrains.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"19 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing efficient bird-like flapping-wing aerial vehicles: insights from aviation perspective. 设计高效的类鸟拍翼飞行器:从航空角度看问题。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-11-01 DOI: 10.1088/1748-3190/ad88c4
Dongfu Ma, Bifeng Song, Shijin Gao, Dong Xue, Jianlin Xuan
{"title":"Designing efficient bird-like flapping-wing aerial vehicles: insights from aviation perspective.","authors":"Dongfu Ma, Bifeng Song, Shijin Gao, Dong Xue, Jianlin Xuan","doi":"10.1088/1748-3190/ad88c4","DOIUrl":"10.1088/1748-3190/ad88c4","url":null,"abstract":"<p><p>Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain-body-task co-adaptation can improve autonomous learning and speed of bipedal walking. 大脑-身体-任务协同适应可以提高自主学习能力和双足行走的速度。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-10-24 DOI: 10.1088/1748-3190/ad8419
Darío Urbina-Meléndez, Hesam Azadjou, Francisco J Valero-Cuevas
{"title":"Brain-body-task co-adaptation can improve autonomous learning and speed of bipedal walking.","authors":"Darío Urbina-Meléndez, Hesam Azadjou, Francisco J Valero-Cuevas","doi":"10.1088/1748-3190/ad8419","DOIUrl":"10.1088/1748-3190/ad8419","url":null,"abstract":"<p><p>Inspired by animals that co-adapt their brain and body to interact with the environment, we present a tendon-driven and over-actuated (i.e.<i>n</i>joint,<i>n</i>+1 actuators) bipedal robot that (i) exploits its backdrivable mechanical properties to manage body-environment interactions without explicit control,<i>and</i>(ii) uses a simple 3-layer neural network to learn to walk after only 2 min of 'natural' motor babbling (i.e. an exploration strategy that is compatible with leg and task dynamics; akin to childsplay). This brain-body collaboration first learns to produce feet cyclical movements 'in air' and, without further tuning, can produce locomotion when the biped is lowered to be in slight contact with the ground. In contrast, training with 2 min of 'naïve' motor babbling (i.e. an exploration strategy that ignores leg task dynamics), does not produce consistent cyclical movements 'in air', and produces erratic movements and no locomotion when in slight contact with the ground. When further lowering the biped and making the desired leg trajectories reach 1 cm below ground (causing the desired-vs-obtained trajectories error to be unavoidable), cyclical movements based on either natural or naïve babbling presented almost equally persistent trends, and locomotion emerged with naïve babbling. Therefore, we show how continual learning of walking in unforeseen circumstances can be driven by continual physical adaptation rooted in the backdrivable properties of the plant and enhanced by exploration strategies that exploit plant dynamics. Our studies also demonstrate that the bio-inspired co-design and co-adaptations of limbs and control strategies can produce locomotion without explicit control of trajectory errors.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. 受胚胎管状心脏启发的一次性可制造软机器人泵。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-10-22 DOI: 10.1088/1748-3190/ad839f
Kyoung Jin Lee, Jung Chan Lee
{"title":"One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart.","authors":"Kyoung Jin Lee, Jung Chan Lee","doi":"10.1088/1748-3190/ad839f","DOIUrl":"10.1088/1748-3190/ad839f","url":null,"abstract":"<p><p>Soft peristaltic pumps, which use soft ring actuators instead of mechanical pistons or rollers, offer advantages in transporting liquids with non-uniform solids, such as slurry, food, and sewage. Recent advances in 3D printing with flexible thermoplastic polyurethane (TPU) present the potential for single-step fabrication of these pumps, distinguished from handcrafted, multistep traditional silicone casting methods. However, because of the relatively high hardness of TPU, TPU-based soft peristaltic pumps contract insufficiently and thus cannot perform as well as silicone-based ones. Improving the performance is crucial for fully automated, one-step manufactured soft pumps to lead to industrial use. This study aims to enhance TPU-based soft pumps through bioinspired design. Specifically, it proposed a design inspired by embryonic tubular hearts, in contrast to previous studies that mimicked digestive tracts. The new design facilitated long-axis stretching of an elliptical lumen during non-concentric contractile motion, akin to embryonic tubular hearts. The design was optimized for ring actuators and pumps 3D-printed with shore hardness 85 A TPU filament. The ring actuator achieved over 99% lumen closure with the best designs. The soft pumps transported water at flow rates of up to 218 ml min<sup>-1</sup>and generated a maximum discharge pressure of 355 mm Hg, comparable to the performance of blood pumps used in continuous renal replacement therapy.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Aerodynamic efficiency of gliding birds vs comparable UAVs: a review (2021Bioinspir. Biomim.16 031001). 更正:滑翔鸟类与同类无人驾驶飞行器的空气动力效率对比:综述(2021Bioinspir. Biomim.16 031001)。
IF 3.1 3区 计算机科学
Bioinspiration & Biomimetics Pub Date : 2024-10-11 DOI: 10.1088/1748-3190/ad7082
Christina Harvey, Daniel J Inman
{"title":"Corrigendum: Aerodynamic efficiency of gliding birds vs comparable UAVs: a review (2021<i>Bioinspir. Biomim</i>.16 031001).","authors":"Christina Harvey, Daniel J Inman","doi":"10.1088/1748-3190/ad7082","DOIUrl":"https://doi.org/10.1088/1748-3190/ad7082","url":null,"abstract":"","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"19 6","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信