BIT Numerical Mathematics最新文献

筛选
英文 中文
A note on approximate Jacobians of implicit Runge–Kutta methods and convergence of modified Newton iterations 隐式龙格-库塔方法的近似雅可比矩阵及修正牛顿迭代的收敛性
3区 数学
BIT Numerical Mathematics Pub Date : 2023-11-01 DOI: 10.1007/s10543-023-00994-8
Laurent O. Jay, Olga Sokratova
{"title":"A note on approximate Jacobians of implicit Runge–Kutta methods and convergence of modified Newton iterations","authors":"Laurent O. Jay, Olga Sokratova","doi":"10.1007/s10543-023-00994-8","DOIUrl":"https://doi.org/10.1007/s10543-023-00994-8","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135325977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New structure-preserving mixed finite element method for the stationary MHD equations with magnetic-current formulation 具有磁流公式的平稳MHD方程的一种新的保结构混合有限元方法
3区 数学
BIT Numerical Mathematics Pub Date : 2023-11-01 DOI: 10.1007/s10543-023-00995-7
Xiaodi Zhang, Shitian Dong
{"title":"New structure-preserving mixed finite element method for the stationary MHD equations with magnetic-current formulation","authors":"Xiaodi Zhang, Shitian Dong","doi":"10.1007/s10543-023-00995-7","DOIUrl":"https://doi.org/10.1007/s10543-023-00995-7","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135270974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gaussian rule for integrals involving Bessel functions 涉及贝塞尔函数积分的高斯规则
3区 数学
BIT Numerical Mathematics Pub Date : 2023-11-01 DOI: 10.1007/s10543-023-00997-5
Eleonora Denich, Paolo Novati
{"title":"Gaussian rule for integrals involving Bessel functions","authors":"Eleonora Denich, Paolo Novati","doi":"10.1007/s10543-023-00997-5","DOIUrl":"https://doi.org/10.1007/s10543-023-00997-5","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations Vlasov-Maxwell方程不连续Galerkin解的超收敛性和精度增强
3区 数学
BIT Numerical Mathematics Pub Date : 2023-10-13 DOI: 10.1007/s10543-023-00993-9
Andrés Galindo-Olarte, Juntao Huang, Jennifer Ryan, Yingda Cheng
{"title":"Superconvergence and accuracy enhancement of discontinuous Galerkin solutions for Vlasov–Maxwell equations","authors":"Andrés Galindo-Olarte, Juntao Huang, Jennifer Ryan, Yingda Cheng","doi":"10.1007/s10543-023-00993-9","DOIUrl":"https://doi.org/10.1007/s10543-023-00993-9","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135857989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds 紧黎曼流形上高斯随机场的Galerkin-Chebyshev逼近
3区 数学
BIT Numerical Mathematics Pub Date : 2023-10-11 DOI: 10.1007/s10543-023-00986-8
Annika Lang, Mike Pereira
{"title":"Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds","authors":"Annika Lang, Mike Pereira","doi":"10.1007/s10543-023-00986-8","DOIUrl":"https://doi.org/10.1007/s10543-023-00986-8","url":null,"abstract":"Abstract A new numerical approximation method for a class of Gaussian random fields on compact connected oriented Riemannian manifolds is introduced. This class of random fields is characterized by the Laplace–Beltrami operator on the manifold. A Galerkin approximation is combined with a polynomial approximation using Chebyshev series. This so-called Galerkin–Chebyshev approximation scheme yields efficient and generic sampling algorithms for Gaussian random fields on manifolds. Strong and weak orders of convergence for the Galerkin approximation and strong convergence orders for the Galerkin–Chebyshev approximation are shown and confirmed through numerical experiments.","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136098688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
On the Forsythe conjecture 关于福赛斯猜想
3区 数学
BIT Numerical Mathematics Pub Date : 2023-09-27 DOI: 10.1007/s10543-023-00991-x
Vance Faber, Jörg Liesen, Petr Tichý
{"title":"On the Forsythe conjecture","authors":"Vance Faber, Jörg Liesen, Petr Tichý","doi":"10.1007/s10543-023-00991-x","DOIUrl":"https://doi.org/10.1007/s10543-023-00991-x","url":null,"abstract":"Abstract Forsythe formulated a conjecture about the asymptotic behavior of the restarted conjugate gradient method in 1968. We translate several of his results into modern terms, and pose an analogous version of the conjecture (originally formulated only for symmetric positive definite matrices) for symmetric and nonsymmetric matrices. Our version of the conjecture uses a two-sided or cross iteration with the given matrix and its transpose, which is based on the projection process used in the Arnoldi (or for symmetric matrices the Lanczos) algorithm. We prove several new results about the limiting behavior of this iteration, but the conjecture still remains largely open. We hope that our paper motivates further research that eventually leads to a proof of the conjecture.","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135579786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep neural networks on diffeomorphism groups for optimal shape reparametrization 差分同构群上最优形状再参数化的深度神经网络
3区 数学
BIT Numerical Mathematics Pub Date : 2023-09-27 DOI: 10.1007/s10543-023-00989-5
Elena Celledoni, Helge Glöckner, Jørgen N. Riseth, Alexander Schmeding
{"title":"Deep neural networks on diffeomorphism groups for optimal shape reparametrization","authors":"Elena Celledoni, Helge Glöckner, Jørgen N. Riseth, Alexander Schmeding","doi":"10.1007/s10543-023-00989-5","DOIUrl":"https://doi.org/10.1007/s10543-023-00989-5","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Paige’s Algorithm for solving a class of tensor least squares problem 求解一类张量最小二乘问题的Paige算法
3区 数学
BIT Numerical Mathematics Pub Date : 2023-09-20 DOI: 10.1007/s10543-023-00990-y
Xue-Feng Duan, Yong-Shen Zhang, Qing-Wen Wang, Chun-Mei Li
{"title":"Paige’s Algorithm for solving a class of tensor least squares problem","authors":"Xue-Feng Duan, Yong-Shen Zhang, Qing-Wen Wang, Chun-Mei Li","doi":"10.1007/s10543-023-00990-y","DOIUrl":"https://doi.org/10.1007/s10543-023-00990-y","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136308933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations 时谐麦克斯韦方程组的非仿射网格稳定有限元法
3区 数学
BIT Numerical Mathematics Pub Date : 2023-09-19 DOI: 10.1007/s10543-023-00988-6
Zhijie Du, Huoyuan Duan
{"title":"A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations","authors":"Zhijie Du, Huoyuan Duan","doi":"10.1007/s10543-023-00988-6","DOIUrl":"https://doi.org/10.1007/s10543-023-00988-6","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135015019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Stabilized low-order mixed finite element methods for a Navier-Stokes hemivariational inequality 一类Navier-Stokes半分不等式的稳定低阶混合有限元方法
3区 数学
BIT Numerical Mathematics Pub Date : 2023-09-16 DOI: 10.1007/s10543-023-00985-9
Weimin Han, Feifei Jing, Yuan Yao
{"title":"Stabilized low-order mixed finite element methods for a Navier-Stokes hemivariational inequality","authors":"Weimin Han, Feifei Jing, Yuan Yao","doi":"10.1007/s10543-023-00985-9","DOIUrl":"https://doi.org/10.1007/s10543-023-00985-9","url":null,"abstract":"","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135306078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信