紧黎曼流形上高斯随机场的Galerkin-Chebyshev逼近

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Annika Lang, Mike Pereira
{"title":"紧黎曼流形上高斯随机场的Galerkin-Chebyshev逼近","authors":"Annika Lang, Mike Pereira","doi":"10.1007/s10543-023-00986-8","DOIUrl":null,"url":null,"abstract":"Abstract A new numerical approximation method for a class of Gaussian random fields on compact connected oriented Riemannian manifolds is introduced. This class of random fields is characterized by the Laplace–Beltrami operator on the manifold. A Galerkin approximation is combined with a polynomial approximation using Chebyshev series. This so-called Galerkin–Chebyshev approximation scheme yields efficient and generic sampling algorithms for Gaussian random fields on manifolds. Strong and weak orders of convergence for the Galerkin approximation and strong convergence orders for the Galerkin–Chebyshev approximation are shown and confirmed through numerical experiments.","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"48 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds\",\"authors\":\"Annika Lang, Mike Pereira\",\"doi\":\"10.1007/s10543-023-00986-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new numerical approximation method for a class of Gaussian random fields on compact connected oriented Riemannian manifolds is introduced. This class of random fields is characterized by the Laplace–Beltrami operator on the manifold. A Galerkin approximation is combined with a polynomial approximation using Chebyshev series. This so-called Galerkin–Chebyshev approximation scheme yields efficient and generic sampling algorithms for Gaussian random fields on manifolds. Strong and weak orders of convergence for the Galerkin approximation and strong convergence orders for the Galerkin–Chebyshev approximation are shown and confirmed through numerical experiments.\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-023-00986-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10543-023-00986-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 6

摘要

摘要介绍了紧连通定向黎曼流形上一类高斯随机场的一种新的数值逼近方法。这类随机场用流形上的拉普拉斯-贝尔特拉米算子表示。伽辽金近似与切比雪夫级数的多项式近似相结合。这种所谓的Galerkin-Chebyshev近似方案为流形上的高斯随机场提供了有效和通用的采样算法。给出了Galerkin近似的强收敛阶和弱收敛阶以及Galerkin - chebyshev近似的强收敛阶,并通过数值实验加以证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds

Galerkin–Chebyshev approximation of Gaussian random fields on compact Riemannian manifolds
Abstract A new numerical approximation method for a class of Gaussian random fields on compact connected oriented Riemannian manifolds is introduced. This class of random fields is characterized by the Laplace–Beltrami operator on the manifold. A Galerkin approximation is combined with a polynomial approximation using Chebyshev series. This so-called Galerkin–Chebyshev approximation scheme yields efficient and generic sampling algorithms for Gaussian random fields on manifolds. Strong and weak orders of convergence for the Galerkin approximation and strong convergence orders for the Galerkin–Chebyshev approximation are shown and confirmed through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信