Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering最新文献

筛选
英文 中文
Multi-frequency Small-Signal Model of Single Phase Diode Rectifier 单相二极管整流器的多频小信号模型
IF 0.7 4区 工程技术
Han Mu, Dongsheng Yang, Chengqi Zhang
{"title":"Multi-frequency Small-Signal Model of Single Phase Diode Rectifier","authors":"Han Mu, Dongsheng Yang, Chengqi Zhang","doi":"10.1109/COMPEL52896.2023.10220980","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10220980","url":null,"abstract":"This paper addresses the problem of accurately modeling diode-based rectifiers by linearizing the switching function dynamics caused by AC side perturbations. The critical challenge is infeasible to directly linearize the switching functions due to a non-derivative point in the AC current. To overcome this limitation, we propose a novel technique that establishes a linear correlation between the switching perturbation and the current perturbation using the harmonic balance method. By considering the internal dynamics of the switching process, our approach builds a small-signal model using the harmonic state space (HSS) method, enabling a more precise representation of the rectifier’s low-frequency AC impedance. The effectiveness of our approach is validated through frequency scanning in electromagnetic transient (EMT) time-domain simulations, demonstrating the enhanced accuracy of the small-signal model.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"4 1","pages":"1-7"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81902572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of DC Microgrid based flexible cold-rolling steel mill Plant – an application of grid supporting rectifier 基于直流微电网的柔性冷轧厂控制——网格支撑整流器的应用
IF 0.7 4区 工程技术
Naresh N. Nandola, Biqi Wang, Xiaofan Wu, R. Burgos
{"title":"Control of DC Microgrid based flexible cold-rolling steel mill Plant – an application of grid supporting rectifier","authors":"Naresh N. Nandola, Biqi Wang, Xiaofan Wu, R. Burgos","doi":"10.1109/COMPEL52896.2023.10221013","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10221013","url":null,"abstract":"The paper presents DC microgrid based plant topology for the flexible cold-rolling mill plant, which is connected to the grid via a grid supporting rectifier. The proposed plant topology improves overall energy efficiency and provides support to the grid to maintain grid frequency and voltage within acceptable tolerance around their nominal values. Simulation model of the proposed plant and its control is developed. The grid supporting functionalities are demonstrated using simulations. Simulations are caried out using realistic load profiles, which are designed based on the data from a real manufacturing plant.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"43 1","pages":"1-7"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88385589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steady-State Analysis of Series-Capacitor Buck Converters in Discontinuous Capacitor Voltage Mode 断续电容电压模式下串联电容降压变换器的稳态分析
IF 0.7 4区 工程技术
Nathan Biesterfeld, Yicheng Zhu, Rahul K. Iyer, N. Ellis, R. Pilawa-Podgurski
{"title":"Steady-State Analysis of Series-Capacitor Buck Converters in Discontinuous Capacitor Voltage Mode","authors":"Nathan Biesterfeld, Yicheng Zhu, Rahul K. Iyer, N. Ellis, R. Pilawa-Podgurski","doi":"10.1109/COMPEL52896.2023.10220970","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10220970","url":null,"abstract":"The series-capacitor buck (SCB) converter is a compact and highly-efficient alternative to the multi-phase buck converter and has recently been demonstrated in data center applications. To achieve high power density, it is desirable to reduce the total flying capacitance in this topology. However, for sufficiently small flying capacitances, a discontinuous capacitor voltage mode (DCVM) manifests, leading to an imbalance in inductor currents. This work provides a detailed derivation of the relationship between the critical capacitance describing the onset of DCVM and converter operating parameters. Moreover, the inductor current imbalance is characterized through the development of a clamped steady-state model. To recover balancing when flying capacitance below the critical value is used, a technique to drive the branches with modified duty cycles in a constant power regime is proposed. Experimental validation of the steady-state model and recovery of inductor current balancing are demonstrated on a 4-branch SCB prototype.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"12 1","pages":"1-6"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89388740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resonant Gate Drive for High Frequency Active-Bridge Power Converters 高频有源电桥功率变换器的谐振栅极驱动
IF 0.7 4区 工程技术
Udit Pratap Singh Tanwar, Chandan Suthar, P. Kyaw, Inder Kumar Vedula, D. Maksimović
{"title":"Resonant Gate Drive for High Frequency Active-Bridge Power Converters","authors":"Udit Pratap Singh Tanwar, Chandan Suthar, P. Kyaw, Inder Kumar Vedula, D. Maksimović","doi":"10.1109/COMPEL52896.2023.10221065","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10221065","url":null,"abstract":"The paper presents the design of a resonant gate drive (RGD), which can be employed in various high-frequency power converters where active bridges operate at ~50% duty cycle. The RGD design is based on an LCLC resonant tank and a small gate-drive isolation transformer. The proposed RGD is simple to implement, does not require auxiliary supplies or high-side gate drivers, has low losses, and provides isolation and intrinsic dead time. A hardware prototype is set up to validate the functionality of RGD on a GaN-based full-bridge inverter, which drives a 500W, 6.78 MHz wireless power transfer (WPT) system. The complete system is tested up to a DC input voltage of 300V with a resistive load. The experimental results show that the dead time generated by the resonant gate driver is sufficient to achieve the ZVS of the power-stage inverter GaN-FETs at all operating points. It is also shown how the RGD reduces gate drive losses almost three times compared to the conventional gate driver.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81946415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability Analysis of a Grid-Forming Inverter by Complex Vector Theory 基于复矢量理论的成网逆变器稳定性分析
IF 0.7 4区 工程技术
T. Kato, Kaoru Inoue, Kosei Watanabe, Daiki Yamashita, Ko Oue
{"title":"Stability Analysis of a Grid-Forming Inverter by Complex Vector Theory","authors":"T. Kato, Kaoru Inoue, Kosei Watanabe, Daiki Yamashita, Ko Oue","doi":"10.1109/COMPEL52896.2023.10220991","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10220991","url":null,"abstract":"This paper proposes a stability analysis method for a grid-forming inverter with a droop control in the stationary domain. The control method is based on the complex vector theory which can utilize a simple SISO optimal controller design, and the stability analysis is based on the impedance method. First, a system operating point is determined and linearized around the point to calculate the output impedance of the inverter. Then output responses of the inverter are analyzed for a small-signal excitation in the frequency domain. The feedback control is processed only in the stationary domain. However, the complex conjugate operation in the droop control is found to transform variables equivalently into the synchronous domain. The frequency analysis method in the stationary/synchronous mixed domain is proposed and described.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"15 1","pages":"1-8"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84093887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 48-to-1V LLC DC Transformer 一个48到1v的LLC直流变压器
IF 0.7 4区 工程技术
X. Ren, Jinfeng Zhang, Yunlei Jiang, Xinru Li, T. Long
{"title":"A 48-to-1V LLC DC Transformer","authors":"X. Ren, Jinfeng Zhang, Yunlei Jiang, Xinru Li, T. Long","doi":"10.1109/COMPEL52896.2023.10221067","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10221067","url":null,"abstract":"This paper presents the design and testing of an LLC DC transformer (DCX) capable of directly converting power from a regulated 48 V DC bus to the point of loads (PoLs). By using series connected transformer windings and parallel connected rectifiers, the proposed LLC DCX has achieved high voltage conversion ratio (48:1) and high output current (>300A) within a 58 by 15 by 5.6 mm volume. The design of the high-frequency transformer is introduced and a 48-to-IV DCX prototype with 300A output current is constructed, exhibiting a peak efficiency of 93.7% and a full load efficiency of 89.0%.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"71 1","pages":"1-5"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87968614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Robust Vector Control of Permanent Magnet Synchronous Machines Resilient to Parameter Uncertainty 参数不确定性下永磁同步电机鲁棒矢量控制
IF 0.7 4区 工程技术
Ali Najmabadi, Kishan Srinivasan, P. Seiler, H. Hofmann
{"title":"A Robust Vector Control of Permanent Magnet Synchronous Machines Resilient to Parameter Uncertainty","authors":"Ali Najmabadi, Kishan Srinivasan, P. Seiler, H. Hofmann","doi":"10.1109/COMPEL52896.2023.10221116","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10221116","url":null,"abstract":"Accurate flux estimation is important for high-performance control of the Permanent Magnet Synchronous Machines (PMSMs). Parameter uncertainty reduces this accuracy and degrades the controller’s performance. This paper presents a vector control of PMSMs which utilizes a combination of the flux estimation based on current and voltage models of PMSMs via a weighting factor to ensure the best performance at all speeds for excitation at dominant frequencies. The weighting factor can be chosen so that the controller can effectively act as a flux regulator or a current regulator. Furthermore, this paper introduces a framework to formulate the system dynamics suitable for robust analysis and determine the Worst Case Gain (WCG) of the reference tracking transfer function of the closed loop system. The weighting factor is optimized in order to minimize the WCG in presence of parameter uncertainty for inductances and resistance. Using this analysis, the proposed regulator can benefit from the optimal blending of the two flux estimation methods and is robust to parameter uncertainty compared to conventional current and flux regulators.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"26 1","pages":"1-8"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88601159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FPGA-based Modular DC Chopper Model for Real-time Simulation & HIL Tests 基于fpga的模块化直流斩波器实时仿真与HIL测试模型
IF 0.7 4区 工程技术
Zerui Dong, Wei Li
{"title":"FPGA-based Modular DC Chopper Model for Real-time Simulation & HIL Tests","authors":"Zerui Dong, Wei Li","doi":"10.1109/COMPEL52896.2023.10221159","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10221159","url":null,"abstract":"Voltage source converter (VSC) based high voltage DC (HVDC) systems are an effective way to connect offshore wind farms to power grids. To better resolve the issues caused by excess wind power during a grid fault, a modular DC chopper, containing hundreds of submodules, has been proposed to absorb the excess power in the VSC-HVDC system. The real-time HIL test bench is an efficient way to validate the DC chopper and its controllers. However, conventional electromagnetic transient (EMT) simulation tools have difficulties modeling the choppers of hundreds of submodules for real-time simulation. In this paper, a high-fidelity real-time model of the modular DC chopper is developed and implemented in FPGA and tested by using a real-time simulator. The modular chopper model is implemented in the field programmable gate array (FPGA) with sub-microsecond time resolution, and its small form-factor pluggable (SFP) IOs allow connection to external controllers through optical fibers and exchanging hundreds of signals in a few microseconds. The model is developed with flexibility allowing easy model scale expansion and capability of controller hardware-in-the-loop (C-HIL) testing. The DC chopper model is validated in real-time simulation along with an HVDC system and the real-time HIL test results are provided.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79797988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Optimization of a High Gravimetric Power Density Receiver for Wireless Charging of Drones 无人机无线充电高重量功率密度接收器的设计与优化
IF 0.7 4区 工程技术
Arka Basu, Kody Froehle, D. Costinett
{"title":"Design and Optimization of a High Gravimetric Power Density Receiver for Wireless Charging of Drones","authors":"Arka Basu, Kody Froehle, D. Costinett","doi":"10.1109/COMPEL52896.2023.10221045","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10221045","url":null,"abstract":"This article presents the weight optimization of a receiver for wireless drone charging applications. There is need for comprehensive modeling to minimize the onboard weight on the flying drone platform. A systematic approach that codesigns all stages of the wireless charger, based on comprehensive loss, weight, and thermal modeling, is put forward to minimize the onboard weight for drone wireless charging applications. A 200 W, GaN-based prototype is implemented to validate the modeling. The prototype has been tested up to 204 W without any active cooling. The receiver achieves a gravimetric power density of 8.3 W/g excluding the weight of connectors, sensing, and control. Index Terms-Wireless power transfer (WPT), power density, synchronous rectifier.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"139 1","pages":"1-8"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79971441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly-Scalable Differential Power Processing Architecture for On-Vehicle Photovoltaics 用于车载光伏的高可扩展差分功率处理架构
IF 0.7 4区 工程技术
M. Solomentsev, Alex J. Hanson
{"title":"Highly-Scalable Differential Power Processing Architecture for On-Vehicle Photovoltaics","authors":"M. Solomentsev, Alex J. Hanson","doi":"10.1109/COMPEL52896.2023.10220974","DOIUrl":"https://doi.org/10.1109/COMPEL52896.2023.10220974","url":null,"abstract":"On-vehicle integration of photovoltaics can extend the range of electric vehicles by a useful amount each day. However, partial shading can significantly limit PV power production even in stationary installations, and this is expected to be more severe in vehicles. Differential power processing (DPP) approaches can maximize PV output power despite partial shading. This work presents a PV-to-isolated-bus DPP architecture specifically for electric vehicle integration and a converter module that is designed to be extensible and inexpensive. The proposed architecture uses the vehicle’s existing low voltage battery as the common bus for the DPP modules and reuses the existing onboard charger to interface the solar string to the high-voltage battery. The proposed converter module achieves maximum power point tracking (MPPT) for the cell(s) it is connected to without requiring any communication or power transfer across the isolation barrier while allowing bidirectional power with synchronous rectification. The proposed architecture offers an inexpensive solution with high system efficiency and simple control that scales easily to large numbers of DPP units. The paper will include modeling of the advantages of the architecture, experimental characterization of the proposed DPP module, and experimental demonstration in a multi-cell, multi-DPP system.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"20 1","pages":"1-7"},"PeriodicalIF":0.7,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72785653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信