{"title":"用于车载光伏的高可扩展差分功率处理架构","authors":"M. Solomentsev, Alex J. Hanson","doi":"10.1109/COMPEL52896.2023.10220974","DOIUrl":null,"url":null,"abstract":"On-vehicle integration of photovoltaics can extend the range of electric vehicles by a useful amount each day. However, partial shading can significantly limit PV power production even in stationary installations, and this is expected to be more severe in vehicles. Differential power processing (DPP) approaches can maximize PV output power despite partial shading. This work presents a PV-to-isolated-bus DPP architecture specifically for electric vehicle integration and a converter module that is designed to be extensible and inexpensive. The proposed architecture uses the vehicle’s existing low voltage battery as the common bus for the DPP modules and reuses the existing onboard charger to interface the solar string to the high-voltage battery. The proposed converter module achieves maximum power point tracking (MPPT) for the cell(s) it is connected to without requiring any communication or power transfer across the isolation barrier while allowing bidirectional power with synchronous rectification. The proposed architecture offers an inexpensive solution with high system efficiency and simple control that scales easily to large numbers of DPP units. The paper will include modeling of the advantages of the architecture, experimental characterization of the proposed DPP module, and experimental demonstration in a multi-cell, multi-DPP system.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"20 1","pages":"1-7"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly-Scalable Differential Power Processing Architecture for On-Vehicle Photovoltaics\",\"authors\":\"M. Solomentsev, Alex J. Hanson\",\"doi\":\"10.1109/COMPEL52896.2023.10220974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-vehicle integration of photovoltaics can extend the range of electric vehicles by a useful amount each day. However, partial shading can significantly limit PV power production even in stationary installations, and this is expected to be more severe in vehicles. Differential power processing (DPP) approaches can maximize PV output power despite partial shading. This work presents a PV-to-isolated-bus DPP architecture specifically for electric vehicle integration and a converter module that is designed to be extensible and inexpensive. The proposed architecture uses the vehicle’s existing low voltage battery as the common bus for the DPP modules and reuses the existing onboard charger to interface the solar string to the high-voltage battery. The proposed converter module achieves maximum power point tracking (MPPT) for the cell(s) it is connected to without requiring any communication or power transfer across the isolation barrier while allowing bidirectional power with synchronous rectification. The proposed architecture offers an inexpensive solution with high system efficiency and simple control that scales easily to large numbers of DPP units. The paper will include modeling of the advantages of the architecture, experimental characterization of the proposed DPP module, and experimental demonstration in a multi-cell, multi-DPP system.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"20 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10220974\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10220974","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Highly-Scalable Differential Power Processing Architecture for On-Vehicle Photovoltaics
On-vehicle integration of photovoltaics can extend the range of electric vehicles by a useful amount each day. However, partial shading can significantly limit PV power production even in stationary installations, and this is expected to be more severe in vehicles. Differential power processing (DPP) approaches can maximize PV output power despite partial shading. This work presents a PV-to-isolated-bus DPP architecture specifically for electric vehicle integration and a converter module that is designed to be extensible and inexpensive. The proposed architecture uses the vehicle’s existing low voltage battery as the common bus for the DPP modules and reuses the existing onboard charger to interface the solar string to the high-voltage battery. The proposed converter module achieves maximum power point tracking (MPPT) for the cell(s) it is connected to without requiring any communication or power transfer across the isolation barrier while allowing bidirectional power with synchronous rectification. The proposed architecture offers an inexpensive solution with high system efficiency and simple control that scales easily to large numbers of DPP units. The paper will include modeling of the advantages of the architecture, experimental characterization of the proposed DPP module, and experimental demonstration in a multi-cell, multi-DPP system.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.