Geoscience Canada最新文献

筛选
英文 中文
London 2021 GAC–MAC Joint Annual Meeting Field Trips 2021年伦敦GAC-MAC联合年会实地考察
4区 地球科学
Geoscience Canada Pub Date : 2020-12-18 DOI: 10.12789/geocanj.2020.47.167
P. Corcoran, P. McCausland
{"title":"London 2021 GAC–MAC Joint Annual Meeting Field Trips","authors":"P. Corcoran, P. McCausland","doi":"10.12789/geocanj.2020.47.167","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.167","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41785827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Great Mining Camps of Canada 8. The Bathurst Mining Camp, New Brunswick, Part 2: Mining History and Contributions to Society 加拿大伟大的采矿营地8。新不伦瑞克巴瑟斯特采矿营地,第2部分:采矿历史和对社会的贡献
4区 地球科学
Geoscience Canada Pub Date : 2020-09-28 DOI: 10.12789/GEOCANJ.2020.47.163
S. Mccutcheon, J. Walker
{"title":"Great Mining Camps of Canada 8. The Bathurst Mining Camp, New Brunswick, Part 2: Mining History and Contributions to Society","authors":"S. Mccutcheon, J. Walker","doi":"10.12789/GEOCANJ.2020.47.163","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2020.47.163","url":null,"abstract":"In the Bathurst Mining Camp (BMC), 12 of the 45 known massive sulphide deposits were mined between 1957 and 2013; one was mined for iron prior to 1950, whereas three others had development work but no production. Eleven of the deposits were mined for base metals for a total production of approximately 179 Mt, with an average grade of 3.12% Pb, 7.91% Zn, 0.47% Cu, and 93.9 g/t Ag. The other deposit was solely mined for gold, present in gossan above massive sulphide, producing approximately one million tonnes grading 1.79 g/t Au. Three of the 11 mined base-metal deposits also had a gossan cap, from which gold was extracted. In 2012, the value of production from the Bathurst Mining Camp exceeded $670 million and accounted for 58 percent of total mineral production in New Brunswick.Base-metal production started in the BMC in 1957 from deposits at Heath Steele Mines, followed by Wedge in 1962, Brunswick No. 12 in 1964, Brunswick No. 6 in 1965, Caribou in 1970, Murray Brook, Stratmat Boundary and Stratmat N-5 in 1989, Captain North Extension in 1990, and lastly, Half Mile Lake in 2012. The only mine in continuous production for most of this time was Brunswick No. 12. During its 49-year lifetime (1964–2013), it produced 136,643,367 tonnes of ore grading 3.44% Pb, 8.74% Zn, 0.37% Cu, and 102.2 g/t Ag, making it one of the largest underground base-metal mines in the world.The BMC remains important to New Brunswick and Canada because of its contributions to economic development, environmental measures, infrastructure, mining innovations, and society in general. The economic value of metals recovered from Brunswick No. 12 alone, in today’s prices exceeds $46 billion. Adding to this figure is production from the other mines in the BMC, along with money injected into the local economy from annual exploration expenditures (100s of $1000s per year) over 60 years. Several environmental measures were initiated in the BMC, including the requirement to be clean shaven and carry a portable respirator (now applied to all mines in Canada); ways to treat acid mine drainage and the thiosalt problem that comes from the milling process; and pioneering studies to develop and install streamside-incubation boxes for Atlantic Salmon eggs in the Nepisiguit River, which boosted survival rates to over 90%. Regarding infrastructure, provincial highways 180 and 430 would not exist if not for the discovery of the BMC; nor would the lead smelter and deep-water port at Belledune. Mining innovations are too numerous to list in this summary, so the reader is referred to the main text. Regarding social effects, the new opportunities, new wealth, and training provided by the mineral industry dramatically changed the living standards and social fabric of northern New Brunswick. What had been a largely poor, rural society, mostly dependent upon the fishing and forestry industries, became a thriving modern community. Also, untold numbers of engineers, geologists, miners, and prospectors `cu","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43965639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Igneous Rock Associations 26. Lamproites, Exotic Potassic Alkaline Rocks: A Review of their Nomenclature, Characterization and Origins 火成岩协会外来钾碱性岩煌斑岩的命名、特征及成因综述
4区 地球科学
Geoscience Canada Pub Date : 2020-09-28 DOI: 10.12789/GEOCANJ.2020.47.162
R. Mitchell
{"title":"Igneous Rock Associations 26. Lamproites, Exotic Potassic Alkaline Rocks: A Review of their Nomenclature, Characterization and Origins","authors":"R. Mitchell","doi":"10.12789/GEOCANJ.2020.47.162","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2020.47.162","url":null,"abstract":"Lamproite is a rare ultrapotassic alkaline rock of petrological importance as it is considered to be derived from metasomatized lithospheric mantle, and of economic significance, being the host of major diamond deposits. A review of the nomenclature of lamproite results in the recommendation that members of the lamproite petrological clan be named using mineralogical-genetic classifications to distinguish them from other genetically unrelated potassic alkaline rocks, kimberlite, and diverse lamprophyres. The names “Group 2 kimberlite” and “orangeite” must be abandoned as these rock types are varieties of bona fide lamproite restricted to the Kaapvaal Craton. Lamproites exhibit extreme diversity in their mineralogy which ranges from olivine phlogopite lamproite, through phlogopite leucite lamproite and potassic titanian richterite-diopside lamproite, to leucite sanidine lamproite. Diamondiferous olivine lamproites are hybrid rocks extensively contaminated by mantle-derived xenocrystic olivine. Currently, lamproites are divided into cratonic (e.g. Leucite Hills, USA; Baifen, China) and orogenic (Mediterranean) varieties (e.g. Murcia-Almeria, Spain; Afyon, Turkey; Xungba, Tibet). Each cratonic and orogenic lamproite province differs significantly in tectonic setting and Sr–Nd–Pb–Hf isotopic compositions. Isotopic compositions indicate derivation from enriched mantle sources, having long-term low Sm/Nd and high Rb/Sr ratios, relative to bulk earth and depleted asthenospheric mantle. All lamproites are considered, on the basis of their geochemistry, to be derived from ancient mineralogically complex K–Ti–Ba–REE-rich veins, or metasomes, in the lithospheric mantle with, or without, subsequent contributions from recent asthenospheric or subducted components at the time of genesis. Lamproite primary magmas are considered to be relatively silica-rich (~50–60 wt.% SiO2), MgO-poor (3–12 wt.%), and ultrapotassic (~8–12 wt.% K2O) as exemplified by hyalo-phlogopite lamproites from the Leucite Hills (Wyoming) or Smoky Butte (Montana). Brief descriptions are given of the most important phreatomagmatic diamondiferous lamproite vents. The tectonic processes which lead to partial melting of metasomes, and/or initiation of magmatism, are described for examples of cratonic and orogenic lamproites. As each lamproite province differs with respect to its mineralogy, geochemical evolution, and tectonic setting there is no simple or common petrogenetic model for their genesis. Each province must be considered as the unique expression of the times and vagaries of ancient mantle metasomatism, coupled with diverse and complex partial melting processes, together with mixing of younger asthenospheric and lithospheric material, and, in the case of many orogenic lamproites, with Paleogene to Recent subducted material.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66818047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen 增生、软硬碰撞:纽芬兰-阿巴拉契亚造山带的异同与应用
4区 地球科学
Geoscience Canada Pub Date : 2020-09-28 DOI: 10.12789/GEOCANJ.2020.47.161
C. V. Staal, A. Zagorevski
{"title":"Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen","authors":"C. V. Staal, A. Zagorevski","doi":"10.12789/GEOCANJ.2020.47.161","DOIUrl":"https://doi.org/10.12789/GEOCANJ.2020.47.161","url":null,"abstract":"We argue there is no distinction between accretion and collision as a process, except when accretion is used in the sense of incorporating small bodies of sedimentary and/or volcanic rocks into an accretionary wedge by off-scraping or underplating. There is also a distinction when these terms are used in classifying mountain belts into accretionary and collisional orogens, although such classifications are commonly based on a qualitative assessment of the scale and nature of the accreted terranes and continents involved in formation of mountain belts. Soft collisions occur when contractional deformation and associated metamorphism are principally concentrated in rocks of the leading edge of the partially pulled-down buoyant plate and the upper plate forearc terrane. Several young arc-continent collisions show evidence for partial or wholesale subduction of the forearc such that the arc is structurally juxtaposed directly against lower plate rocks. This process may explain the poor preservation of forearcs in the geological record. Soft collisions generally change into hard collisions over time, except if the collision is rapidly followed by formation of a new subduction zone due to step-back or polarity reversal. Thickening and metamorphism of the arc's suprastructure and retro-arc part of upper plate due to contractional deformation and burial are the characteristics of a hard collision or an advancing Andean-type margin. Strong rheological coupling of the converging plates and lower and upper crust in the down-going continental margin promotes a hard collision. Application of the soft–hard terminology supports a structural juxtaposition of the Taconic soft collision recorded in the Humber margin of western Newfoundland with a hard collision recorded in the adjacent Dashwoods block. It is postulated that Dashwoods was translated dextrally along the Cabot-Baie Verte fault system from a position to the north of Newfoundland where the Notre Dame arc collided ca. 10 m.y. earlier with a wide promontory in a hyperextended segment of the Laurentian margin.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42841917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Geoscience in the Time of Covid 新冠肺炎时代的地球科学
4区 地球科学
Geoscience Canada Pub Date : 2020-07-10 DOI: 10.12789/geocanj.2020.47.155
A. Kerr
{"title":"Geoscience in the Time of Covid","authors":"A. Kerr","doi":"10.12789/geocanj.2020.47.155","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.155","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48778731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proterozoic–Paleozoic Sedimentary Rocks and Mesozoic–Cenozoic Landscapes of the Cape Mountains Across the Kango Complex Reveal ‘More Gaps Than Record’ from Rodinia and Gondwana to Africa 横跨Kango复合体的开普山脉元古代-古生代沉积岩和中-新生代景观揭示了从罗迪尼亚和冈瓦纳到非洲的“缺口多于记录”
4区 地球科学
Geoscience Canada Pub Date : 2020-07-10 DOI: 10.12789/geocanj.2020.47.157
M. Wit, B. Linol, V. Nengovhela
{"title":"Proterozoic–Paleozoic Sedimentary Rocks and Mesozoic–Cenozoic Landscapes of the Cape Mountains Across the Kango Complex Reveal ‘More Gaps Than Record’ from Rodinia and Gondwana to Africa","authors":"M. Wit, B. Linol, V. Nengovhela","doi":"10.12789/geocanj.2020.47.157","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.157","url":null,"abstract":"The Kango (Cango) region flanks the northern margins of the Klein Karoo and the Cape Mountains across the Western Cape Province of South Africa. It preserves a condensed Proterozoic–Paleozoic stratigraphy exposed via a Mesozoic–Cenozoic morphology with a present Alpine-like topography. Its rocks and landscapes have been repeatedly mapped and documented for the past 150 years. Over the last 25 years, we remapped and dated a central-eastern section of this region. The subvertically bedded and cleaved rocks reveal an 8–10 km thick stratigraphy covering more than 700 million years between ca. 1200 and 500 Ma with several unconformities and disconformities. At ca. 252 Ma, during the Cape orogeny, this Kango Complex was deformed along thrusts and sub-isoclinal folds producing steeply dipping phyllites and slates. It was uplifted by 3–5 km during the Kalahari epeirogeny between 140 and 60 Ma while eroding at ca. 100–200 m/m.y. (120–80 Ma). During the Cenozoic, the rate of uplift decreased by an order of magnitude and today is ca. 0.4–0.7 m/m.y. across steep slopes and canyons in contrast to the Himalayas where erosion rates are about hundred times faster. A recent publication about this central-eastern section of the Kango region disputes the existence of regional isoclinal folds and suggests that deposition of the oldest sedimentary successions, including carbonate rocks of the Cango Caves (limestone-marble with enigmatic microfossils) was simple, continuous and restricted to between ca. 700 and 500 Ma, decreasing earlier estimates of the stratigraphic age range by 60–80%. Similarly, recent interpretations of the complex landscapes link the northern contact between the Kango and Table Mountain rock sequences to Quaternary faults. We present a new geological database, mapped between 1:500 and 1:10,000 scales, and twelve stratigraphic sections with younging directions linked to structural and isotopic data that support repetitions along regional isoclinal folds and thrust zones of the Kango sequences during the Permo–Triassic Cape orogeny, and geomorphic data that link the origin of its landscapes to weathering and erosion during the Cretaceous–Cenozoic Kalahari epeirogeny. During its evolution, the Kango Basin directly flanked both Grenvillian and Pan-African Mountain systems. But, at an average sedimentation rate of ca. 1 mm/70 years (0.014 mm/year) and with present low erosion rates (0.005 mm/year), there is likely more time missing than preserved of the tectono-erosion across these different regions of Rodinia and Gondwana before Africa emerged. To further evaluate the geodynamic significance of these time gaps requires more field mapping linked to new transdisciplinary geosciences.\u0000RÉSUMÉLa région du Kango (Cango) flanque les marges nord du petit Karoo et des montagnes du Cap dans la province du Western Cape en Afrique du Sud. Elle préserve une stratigraphie condensée protérozoïque–paléozoïque exposée via une morphologie mésozoïque–cénozoïque avec u","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46931397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Long Walks, Lost Documents and the Birthplace of Igneous Petrology: Exploring Glen Tilt, Perthshire, Scotland 漫长的跋涉、遗失的文献和火成岩石学的诞生地:探索苏格兰珀斯郡的Glen Tilt
4区 地球科学
Geoscience Canada Pub Date : 2020-07-10 DOI: 10.12789/geocanj.2020.47.159
A. Kerr
{"title":"Long Walks, Lost Documents and the Birthplace of Igneous Petrology: Exploring Glen Tilt, Perthshire, Scotland","authors":"A. Kerr","doi":"10.12789/geocanj.2020.47.159","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.159","url":null,"abstract":"The spectacular angular unconformity at Siccar Point is the most famous site associated with James Hutton (1726–1797), but it was not his only place of insight. In 1785, three years before he discovered Siccar Point, Hutton examined outcrops in the still-remote valley of Glen Tilt, in the Scottish Highlands. He documented contact relationships between Precambrian metasedimentary rocks and Paleozoic granite bodies, although he had no knowledge of their true ages. Near to the hunting lodge where he and his colleague John Clerk of Eldin stayed, veins of granite clearly cut through relict bedding in the stratified rocks and disrupt their layering, breaking apart individual strata and leaving fragments (xenoliths) surrounded by granite. Hutton correctly deduced that the granite must originally have been in a ‘state of fusion’ and was forcefully injected into much older ‘schistus’. Such conclusions contravened prevailing ideas that granite bodies formed from aqueous solutions, and also refuted a wider philosophical view that granite and other crystalline rocks were the oldest and first-created parts of the Earth. Hutton’s key outcrops in Glen Tilt are easy to visit, although they do require a long (but easy) roundtrip hike of some 25 km. These are certainly not the most spectacular intrusion breccias that I have ever seen, but they are very instructive, and were very influential, because they sparked a long, and at times acrimonious, debate about the origins of igneous rocks and especially granite. This controversy had many strange twists and turns. These include the disappearance of Hutton’s original manuscript after his death, and its serendipitous rediscovery a century later, and the similar loss and rediscovery of exquisite drawings by John Clerk, almost two centuries after they were first penned. Among the lost drawings is an early example of detailed outcrop-scale mapping, which would become a key field-work technique. Hutton’s vision of granite as the product of hot, liquid material that moved upward in the Earth’s crust (plutonism) eventually prevailed over the idea that crystalline rocks formed from a primordial ocean that once enveloped the Earth (neptunism), but this victory did not come easily or quickly. In another strange twist of history, new evidence from the Cape of Good Hope in South Africa eventually acted to further the plutonist cause. Glen Tilt has changed very little since the time of Hutton, but the observations that were made here, and the long debate that followed, brought fundamental changes in our understanding of the Earth. Although Siccar Point should remain the first entry on the bucket list of any prospective geopilgrim to Scotland, the long and beautiful valley of the River Tilt should also be a priority.\u0000RÉSUMÉLa spectaculaire discordance angulaire de Siccar Point est le site le plus célèbre associé à James Hutton (1726–1797), mais ce n'était pas le seul lieu qui l’ait inspiré. En 1785, trois ans avant de découvrir Sic","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45010337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthropocene: Transdisciplinary Shorthand for Human Disruption of the Earth System 人类世:人类破坏地球系统的跨学科简写
4区 地球科学
Geoscience Canada Pub Date : 2020-07-10 DOI: 10.12789/geocanj.2020.47.160
E. Koster
{"title":"Anthropocene: Transdisciplinary Shorthand for Human Disruption of the Earth System","authors":"E. Koster","doi":"10.12789/geocanj.2020.47.160","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.160","url":null,"abstract":"Increasingly, deliberations to potentially add the Anthropocene to the Geological Time Scale in recognition of humanity’s environmental impacts and stratigraphic record are attracting interest from non-geological disciplines and the news media. The 35 member Anthropocene Working Group, a constituent body of the International Commission on Stratigraphy, recently concluded that the worldwide fallout of radionuclides from atomic bomb testing in the mid-20th century best defines the base of the Anthropocene. With a search for the optimal ‘golden spike’ locality in progress as a key step toward any ratification by the International Union of Geological Sciences, there are widely held views outside of geological circles that the Anthropocene is already designated as an epoch. Regardless of its eventual formal or informal standing, this article opines that the term Anthropocene has become valuable shorthand for recognizing humanity as the dominant species which, in a geological nanosecond, has extensively detached itself from the Earth System, endangering the future of both. Accordingly, this article urges the entire geological profession to engage with the work of the Anthropocene Working Group and, as the originator of the term, to coalesce its activities with those of other disciplines concerned with environmental health and linked human health challenges.\u0000RÉSUMÉDe plus en plus, les délibérations visant à éventuellement ajouter l'Anthropocène à l'échelle du temps géologique en reconnaissance des impacts environnementaux de l'humanité et des données stratigraphiques suscitent l'intérêt des disciplines non géologiques et des médias. Les 35 membres du Groupe de travail sur l'Anthropocène, un organe constitutif de la Commission internationale de stratigraphie, ont récemment conclu que les retombées mondiales des radionucléides résultant des essais de bombes atomiques au milieu du XXe siècle définissent le mieux la base de l'Anthropocène. Avec la recherche de la localité de référence optimale du « clou d'or » en cours comme étape clé vers toute ratification par l'Union internationale des sciences géologiques, il existe des opinions largement partagées en dehors des cercles géologiques selon lesquelles l'Anthropocène est déjà désigné comme une époque. Indépendamment de sa position finale formelle ou informelle, cet article estime que le terme Anthropocène est devenu un raccourci précieux pour reconnaître l'humanité comme l'espèce dominante qui, dans une nanoseconde géologique, s'est largement dissocié du système terrestre, mettant en danger l'avenir des deux. Par conséquent, cet article exhorte l'ensemble de la profession géologique à s'engager dans les travaux du Groupe de travail sur l'Anthropocène et, en tant que créateur du terme, à fusionner ses activités avec celles d'autres disciplines concernées par la santé environnementale et les défis liés à la santé humaine.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44486606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Igneous Rock Associations 25. Pre-Pliocene Andean Magmatism in Chile 火成岩协会智利前上新世安第斯岩浆活动
4区 地球科学
Geoscience Canada Pub Date : 2020-07-10 DOI: 10.12789/geocanj.2020.47.158
V. Oliveros, P. Moreno-Yaeger, Laura Flores
{"title":"Igneous Rock Associations 25. Pre-Pliocene Andean Magmatism in Chile","authors":"V. Oliveros, P. Moreno-Yaeger, Laura Flores","doi":"10.12789/geocanj.2020.47.158","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.158","url":null,"abstract":"Andean-type magmatism and the term ‘andesite’ are often used as the norm for the results of subduction of oceanic lithosphere under a continent, and the typical rock formed. Although the Andes chain occupies the whole western margin of South America, the most comprehensively studied rocks occur in the present-day Chilean territory and are the focus of this paper. Andean magmatism in this region developed from the Rhaetian-Hettangian boundary (ca. 200 Ma) to the present and represents the activity of a long-lived continental magmatic arc. This paper discusses Pre-Pleistocene volcanic, plutonic, and volcano-sedimentary rocks related to the arc that cover most of the continental mass of Chile (between the Pacific coast and the High Andes) between the latitudes of 18° and 50°S. They comprise most of the range of sub-alkaline igneous rocks, from gabbro to monzogranite and from basalt to rhyolite, but are dominated by the tonalite-granodiorite and andesite example members. Variations in the petrographic characteristics, major and trace element composition and isotopic signature of the igneous rocks can be correlated to changes in the physical parameters of the subduction zone, such as dip angle of the subducting slab, convergence rate and angle of convergence. Early Andean magmatic products (Jurassic to Early Cretaceous) are found along the Coastal Cordillera in the westernmost part of the Andes. The rock record of the subsequent stages (Late Cretaceous, Paleocene–Early Eocene, Middle Eocene–Oligocene, Miocene) is progressively shifted to the east, reflecting migration of the magmatic front towards the continent. Tectonic segmentation of the convergent margin, as attested by the magmatic record, may have occurred throughout the Andean life span but it is particularly evident from the Eocene onwards, where the evolution of the northern part of the Chilean Andes (north of 27°S latitude) is very different to that of the southern segment (south of 27°S latitude).\u0000RÉSUMÉLe magmatisme de type andin et le terme « andésite » sont souvent les appellations utilisées pour décrire les résultats de la subduction de la lithosphère océanique sous un continent, et la roche typique formée. Bien que la chaîne des Andes occupe toute la marge ouest de l'Amérique du Sud, les roches les plus étudiées se trouvent dans le territoire chilien actuel et sont l'objet de cet article. Le magmatisme andin dans cette région s'est développé depuis la limite rhéto-hettangienne (environ 200 Ma) jusqu'à aujourd'hui et représente l'activité d'un arc magmatique continental persistant. Cet article a pour sujet les roches volcaniques, plutoniques et volcano-sédimentaires du pré-Pléistocène liées à l'arc qui couvrent la majeure partie de la masse continentale du Chili (entre la côte du Pacifique et les Hautes Andes) entre les latitudes de 18° et 50°S. Elles comprennent la majeure partie de la gamme de roches ignées sous-alcalines, du gabbro à la monzogranite et du basalte à la rhyolite, mais ","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46588680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Maarten de Wit: 1947-2020 Maarten de Wit:1947-2020
4区 地球科学
Geoscience Canada Pub Date : 2020-07-10 DOI: 10.12789/geocanj.2020.47.156
Andrew Hynes, Bastien Linol
{"title":"Maarten de Wit: 1947-2020","authors":"Andrew Hynes, Bastien Linol","doi":"10.12789/geocanj.2020.47.156","DOIUrl":"https://doi.org/10.12789/geocanj.2020.47.156","url":null,"abstract":"","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"1 1","pages":"5-6"},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42055419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信