Anushree S. Jadhav, Surya Narayanan, Chinta Sidharthan, F. Köhler, N. A. Aravind
{"title":"Phylogeny of freshwater mollusc genus Brotia H. Adams, 1866 (Gastropoda: Pachychilidae) from north-east India","authors":"Anushree S. Jadhav, Surya Narayanan, Chinta Sidharthan, F. Köhler, N. A. Aravind","doi":"10.1071/IS23037","DOIUrl":"https://doi.org/10.1071/IS23037","url":null,"abstract":"ABSTRACT The pachychilid genus Brotia H. Adams, 1866, distributed across South and South-East Asia, comprises 46 currently accepted species. Although Brotia has recently been revised, the systematic treatment of the Indian species requires further scrutiny. This study aims to resolve the phylogenetic relationships between Brotia species from north-east India and estimate the divergence using two mitochondrial markers, cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (16S). Species delimitation analyses have revealed six to nine distinct species in north-east India instead of the single currently known species. We confirm the monophyly of Brotia from the entire distributional range in South and South-East Asia and show that all Indian species form a single clade nested within the South-East Asian radiation. We conclude that Brotia has a South-East Asian origin, with two independent dispersals into India since the early Eocene and through the Oligocene, eventually splitting from ancestors during the late Cretaceous. Further integrative taxonomic research is needed to resolve the taxonomic status of the candidate species delineated herein and reveal the exact number of species in north-east India. This is the first phylogenetic analysis of Brotia from India, significantly improving our understanding of Indian freshwater gastropod fauna.","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"16 6","pages":"772 - 781"},"PeriodicalIF":2.2,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139263321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A preliminary phylogeny for the pseudoscorpion family Garypinidae (Pseudoscorpiones: Garypinoidea), with new taxa and remarks on the Australasian fauna","authors":"Mark S. Harvey","doi":"10.1071/is23029","DOIUrl":"https://doi.org/10.1071/is23029","url":null,"abstract":"The pseudoscorpion family Garypinidae is globally distributed with 79 species in 21 genera and several species represented by Mesozoic and Eocene fossils. This was recently included with the family Larcidae in a unique superfamily, Garypinoidea but there are no phylogenetic hypotheses for the group. Sequence data were obtained for 14 species in 8 genera and numerous outgroup taxa that formed the basis for a preliminary molecular phylogeny. A new subfamily classification is proposed with Protogarypininae, subfamily nov. comprising five genera mostly found in the southern hemisphere, Amblyolpiinae subfamily nov. comprising two genera and Garypininae for the remaining genera. Several new taxa are described including the first Australian species of Aldabrinus, A. rixi sp. nov., a new genus from South-East Asia, Nobilipinus, comprising Nobilipinus nobilis (With, 1906), N. vachoni (Redikorzev, 1938) (that is removed from the synonymy of G. nobilis) and five new species, N. affinis, N. galeatus, N. karenae, N. kohi and N. tricosus, and Solinus pingrup sp. nov. from south-western Australia. Paraldabrinus Beier, 1966 is newly synonymised with Aldabrinus, and Indogarypinus Murthy and Ananthakrishan, 1977 is newly synonymised with Solinus. The holotype of Garypinus mirabilis With, 1907 from Hawaii is redescribed but found to be a tritonymph, rendering the generic identity uncertain. ZooBank: urn:lsid:zoobank.org:pub:E15E4705-0697-4208-9338-A778343996CA","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134885673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruiwen Wu, Lili Liu, Xiongjun Liu, Yingying Ye, Xiaoping Wu, Zhicai Xie, Zhenyuan Liu, Zhengfei Li
{"title":"Towards a systematic revision of the superfamily Cyrenoidea (Bivalvia: Imparidentia): species delimitation, multi-locus phylogeny and mitochondrial phylogenomics","authors":"Ruiwen Wu, Lili Liu, Xiongjun Liu, Yingying Ye, Xiaoping Wu, Zhicai Xie, Zhenyuan Liu, Zhengfei Li","doi":"10.1071/is23015","DOIUrl":"https://doi.org/10.1071/is23015","url":null,"abstract":"Cyrenoidea is a superfamily of bivalves (Bivalvia: Imparidentia) currently comprising three families (Cyrenidae, Cyrenoididae and Glauconomidae). The superfamily is widely distributed in marine, brackish and freshwater environments, with an estimated 60 or more living species. Recent phylogenetic results have confirmed the monophyly of Cyrenoidea and placement in Venerida. Nevertheless, a comprehensive phylogenetic analysis of Cyrenoidea remains elusive and the phylogeny is unresolved due to inadequate sampling in previous studies. Moreover, the taxonomy and delimitation of most species, originally based on shell morphology, have not yet been tested with molecular data. Here, we constructed three molecular datasets by sequencing three markers (<i>COI</i>+<i>16S</i> rRNA+<i>28S</i> rRNA) and complete mitogenomes for <i>Geloina coaxans</i> (Gmelin, 1791) and <i>Glauconome virens</i> (Linnaeus, 1767). <i>COI</i> barcoding clarifies the validity of <i>Geloina coaxans</i> and <i>Geloina erosa</i> that have been subject to controversy regarding synonymy. Additionally, the barcoding supports the existence of multiple cryptic species within the <i>Geloina expansa</i> complex. A multi-locus dataset (<i>COI</i>+<i>16S</i> rRNA+<i>28S</i> rRNA) provides the most comprehensive phylogeny of all eight recognised genera of Cyrenoidea to date. Phylogenetic results indicate that the currently recognised family Cyrenidae is polyphyletic. The type species <i>Geloina coaxans</i>, <i>Cyanocyclas limosa</i> (Maton, 1811) and <i>Polymesoda caroliniana</i> (Bosc, 1801) that have long been classified within the family Cyrenidae based on shell morphology, have a closer relationship with <i>Cyrenoida floridana</i> Dall, 1896 than with other Cyrenidae. Therefore we transfer the genera <i>Geloina</i>, <i>Cyanocyclas</i> and <i>Polymesoda</i> from the family Cyrenidae to the family Cyrenoididae. The mitochondrial phylogenomics further support the family-level relationships in Cyrenoidea obtained from the three-gene analyses, confirming that the newly defined Cyrenoididae is closely related to Glauconomidae as the sister group. We observed a novel gene arrangement in <i>Glauconome virens</i>, the first report on the mitogenome of the family Glauconomidae, by comparing gene arrangements. Three patterns of gene rearrangement identified in Cyrenoidea are shared by the families Glauconomidae, Cyrenoididae and Cyrenidae, suggesting that gene arrangements can be a valuable tool for phylogenetic studies.","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arthit Pholyotha, S. Panha, C. Sutcharit, Parin Jirapatrasilp, Teerapong Seesamut, T. Liew, P. Tongkerd
{"title":"Molecular phylogeny of the land snail family Euconulidae in Thailand and its position in the superfamily Trochomorphoidea (Stylommatophora: Limacoidei), with description of a new genus","authors":"Arthit Pholyotha, S. Panha, C. Sutcharit, Parin Jirapatrasilp, Teerapong Seesamut, T. Liew, P. Tongkerd","doi":"10.1071/IS23012","DOIUrl":"https://doi.org/10.1071/IS23012","url":null,"abstract":"ABSTRACT The Euconulidae is a globally distributed land snail family but there is no record of this family from Thailand. In this study, we describe a new genus, Siamoconus gen. nov., based on comparative studies of the shell characteristics, external morphology of animals, radula, genital and spermatophore structures, and molecular phylogeny. We performed phylogenetic analyses of two mitochondrial gene fragment (cytochrome c oxidase I, COI; and 16S rRNA) and one nuclear (28S rRNA) gene fragment to clarify the relationships with other euconulid genera and its position in the superfamily Trochomorphoidea. We also analysed shell morphometrics, male genitalia and mantle pigmentation of Siamoconus gen. nov., confirming the status of three new species with keeled shells (S. boreas sp. nov., S. coleus sp. nov. and S. geotrochoides sp. nov.) and one new species with a rounded shell (S. destitutus sp. nov.). These new species are restricted to limestone areas in northern and north-eastern Thailand. We also re-examined the status of other genera in the superfamily Trochomorphoidea based on shell features, body pigmentation, radula, genital anatomy, spermatophore morphology, and a phylogenetic analysis of all available trochomorphoidean DNA sequences. Our analysis suggests that the family Geotrochidae, previously synonymised with the Trochomorphidae, should be resurrected to represent the genus Geotrochus from Borneo, and this family is retrieved as the sister clade of the Dyakiidae. ZooBank: urn:lsid:zoobank.org:pub:C5205F4E-5DDE-42E6-A532-761CAFE099C3","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"571 - 605"},"PeriodicalIF":2.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47299473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neolucia bollami Eastwood, Braby & Graham, sp. nov. (Lepidoptera: Lycaenidae): speciation of a new allochronic cryptic butterfly from south-western Western Australia","authors":"Rodney G. Eastwood, M. Braby, Matthew R. Williams","doi":"10.1071/IS23009","DOIUrl":"https://doi.org/10.1071/IS23009","url":null,"abstract":"ABSTRACT South-western Western Australia is a global biodiversity hotspot renowned for exceptional diversity of plants and animals. The evolutionary processes that have generated this high biodiversity are not always clear, particularly for invertebrates, yet the area supports a very large number of endemic species that have diversified in situ. We use an integrative taxonomic approach based on adult and immature morphology, ecology, behaviour and molecular data to investigate the taxonomic status of a sympatric but seasonally isolated form (Neolucia agricola occidens Waterhouse & Lyell, 1914 form ‘Julimar’) of the polyommatine butterfly Neolucia agricola (Westwood, 1851) in south-western Western Australia. Our molecular dataset comprised 112 samples representing all Neolucia Waterhouse & Turner, 1905 species (100 COI 5′ sequences, 658 bp, plus 12 COI 3′, tRNA Leu, COII and EF1-α sequences, 3303 bp). Maximum likelihood phylogenetic analysis of the combined dataset recovered form ‘Julimar’ and N. agricola as reciprocally monophyletic, with a mean uncorrected ‘p’ pairwise divergence of 5.77% for the ‘barcode’ region of COI. Based on this and other evidence we recognise form ‘Julimar’ as a new species, Neolucia bollami Eastwood, Braby & Graham, sp. nov., sister to N. agricola and endemic to south-western Western Australia. As a result of these findings, we evaluated the evolutionary history of the two Neolucia species in WA and the processes that may have contributed to the diversification in sympatry or allopatry. We conclude that the multiple effect traits associated with a host shift, including host fidelity and temporal divergence, played an important role in the diversification process and in maintaining the reproductive integrity of the nascent allochronic species. ZooBank: urn:lsid:zoobank.org:act:53D9AD14-9694-4B5E-889C-A8D533E7F57D","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"552 - 570"},"PeriodicalIF":2.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48065435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan‐Da Li, Zhenhua Liu, Diying Huang, Chen-yang Cai
{"title":"An unusual lineage of Helotidae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Nitiduloidea)","authors":"Yan‐Da Li, Zhenhua Liu, Diying Huang, Chen-yang Cai","doi":"10.1071/IS23004","DOIUrl":"https://doi.org/10.1071/IS23004","url":null,"abstract":"ABSTRACT Helotidae is a small and morphologically uniform family in Nitiduloidea. In this study, we report an unusual form of helotids, represented by Lobatihelota lescheni Li, Liu & Cai gen. nov., sp. nov. and L. iridescens Li, Liu & Cai sp. nov. from mid-Cretaceous Burmese amber. Lobatihelota is unique within the family in having a leg morphology typical of some Nitidulidae and Kateretidae (tibia widened distally, tarsomeres 1–3 bilobed, tarsomere 4 shortened). Additionally, new diagnostic characters are suggested for Trihelota from the same deposit (prosternum and mesoventrite with paired carinae, metanepisterna short, metacoxae meeting elytra laterally), and the morphological divergence of representative genera of the superfamilies Erotyloidea, Nitiduloidea and Cucujoidea is visualised using a phylomorphospace approach. ZooBank: urn:lsid:zoobank.org:pub:FE0E4D6A-8157-4E14-9240-7B87F285AEA5","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"538 - 551"},"PeriodicalIF":2.2,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47727136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rare yet everywhere: phylogenetic position of the enigmatic deep-sea shrimp Physetocaris microphthalma Chace, 1940 (Decapoda, Caridea)","authors":"Pedro A. Peres, H. Bracken-Grissom","doi":"10.1071/IS23024","DOIUrl":"https://doi.org/10.1071/IS23024","url":null,"abstract":"ABSTRACT The mysterious deep-sea shrimp Physetocaris microphthalma Chace, 1940 remains a challenge for the understanding of caridean shrimp systematics. Upon first description in 1940, the unique morphology in combination with lack of material made the allocation of P. microphthalma to any family or superfamily difficult, therefore the monotypic superfamily Physetocaridoidea and family Physetocarididae were described. The rarity of the species, only documented a few times in scientific literature, in combination with a circumglobal distribution, makes the advancement of the systematics and biology of this shrimp challenging. Current literature places Physetocaridoidea as a superfamily with a sister relationship to Pandaloidea but this relationship has never been tested using molecular data. Recent expeditions to the northern Gulf of Mexico and north-eastern Pacific Ocean provided fresh material for inclusion in phylogenetic analyses. Here, we used a molecular systematics approach to investigate the phylogenetic placement of this species within the infraorder Caridea and test for cryptic diversity across oceanic basins. We sequenced five genes (12S rRNA, 16S rRNA, H3, NaK and PEPCK) and built phylogenetic trees including specimens across Pandaloidea and other carideans (n = 75) using maximum-likelihood and Bayesian approaches. Our results strongly support the inclusion of P. microphthalma within the family Pandalidae and superfamily Pandaloidea, indicating that the superfamily Physetocaridoidea and family Physetocaridae are not valid. In addition, the inclusion of specimens from the Atlantic and Pacific Oceans does not support evidence of cryptic diversity, suggesting the global distribution of P. microphthalma. This is the first study to provide genetic data for this species, resulting in an updated classification for the infraorder Caridea and highlighting that deep-pelagic species can be rare yet still widely distributed.","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"529 - 537"},"PeriodicalIF":2.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49632296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resolving the taxonomy of the Antarctic feather star species complex Promachocrinus ‘kerguelensis’ (Echinodermata: Crinoidea)","authors":"Emily L. McLaughlin, N. Wilson, G. Rouse","doi":"10.1071/IS22057","DOIUrl":"https://doi.org/10.1071/IS22057","url":null,"abstract":"ABSTRACT An increasing number of Antarctic invertebrate taxa have been revealed as cryptic species complexes following DNA-based assessments. This ultimately necessitates a morphological reassessment to find traits that will help identify these cryptic or pseudocryptic species without the need for sequencing every individual. This work concerns comatulid crinoid echinoderms long considered to represent a single, circum-Antarctic species, Promachocrinus kerguelensis. The first molecular studies sought to distinguish the diversity in the complex and understand the constituent species distributions but stopped short of formal taxonomic assessment. Here, we continued to increase sample representation around the Southern Ocean and sequenced the mitochondrial COI gene for all new specimens, and additional genes for a few representatives. We also elucidated previously unappreciated features, particularly body pigmentation and morphology of the centrodorsal ossicle in an attempt to diagnose some species morphologically and based on DNA data. The species complex within Promachocrinus is here resolved into P. kerguelensis Carpenter, 1879, P. vanhoeffenianus Minckert, 1905, P. joubini Vaney, 1910, P. mawsoni (Clark, 1937) comb. nov. (transferred from Florometra) and four previously unnamed species, P. fragarius sp. nov., P. unruhi sp. nov., P. uskglassi sp. nov. and P. wattsorum sp. nov. Although most species can be distinguished morphologically, several cannot be reliably separated without DNA data. All sequenced species are essentially circum-Antarctic, with the notable exception of P. wattsorum sp. nov. that is restricted to the Prince Edward Islands in the sub-Antarctic Indian Ocean and P. vanhoeffenianus that is only known from the type locality in the Davis Sea. The vast nature of the Antarctic and Southern Ocean ecosystem dictates large scale sampling to understand the full extent of the biodiversity. ZooBank: urn:lsid:zoobank.org:pub:F871CDC8-973B-48CE-8A61-33658D4EB4B1","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"498 - 527"},"PeriodicalIF":2.2,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49607174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematics of the Ogyris aenone (Waterhouse, 1902) complex (Lepidoptera: Lycaenidae): threatened Australian butterflies of national conservation significance","authors":"E. Beaver, M. Braby, A. Mikheyev","doi":"10.1071/IS23003","DOIUrl":"https://doi.org/10.1071/IS23003","url":null,"abstract":"ABSTRACT The butterfly genus Ogyris Angas, 1847 consists of several striking but poorly resolved complexes endemic to Australia and New Guinea, many of which have an obligate association with ants. Here, we revise the systematics of the Ogyris aenone (Waterhouse, 1902) complex through an integrative taxonomic approach based on molecular phylogenetic analysis, morphological examination, life histories and ecology. Mitochondrial sequence data based on concatenated cytochrome oxidase I (COI) and cytochrome b (cytb) (total of 1203 bp) for 36 ingroup samples were generated and combined with sequences available on NCBI GenBank for Ogyris. Phylogenetic analysis inferred by maximum likelihood methods resolved five taxa within this group, with one taxon, Ogyris caelestia Beaver & Braby sp. nov., described as a new species and another, O. doddi stat. rev., raised to full species. Phylogenetic relationships among the five taxa are as follows: (O. caelestia + O. aenone) + (O. ianthis + (O. iphis + O. doddi)). This revision brings the number of recognised Ogyris species to 16 and for the tribe Ogyrini to 18. This group of butterflies was found to be scarce – field samples of host trees that had the co-occurrence of both mistletoe and the appropriate attendant ant at 12 locations in eastern and northern Australia revealed low rates of occupancy (<50%, with an overall average of 17%) based on the presence of immature stages of the five butterfly species. The complete life histories, general biology and ecology of all members of this species-group are illustrated and diagnosed for the first time and confusing aspects of the literature are clarified. Several taxa are of conservation significance, including the new species, and future directions are discussed in relation to this. ZooBank: urn:lsid:zoobank.org:pub:FC258ED6-AA1F-4E11-BFE1-D0A612E4F166","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"457 - 497"},"PeriodicalIF":2.2,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45218948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natsumi Hookabe, Y. Fujino, Naoto Jimi, R. Ueshima
{"title":"At the edge of the sea: the supralittoral nemertean, Acteonemertes orientalis sp. nov. (Nemertea: Eumonostilifera: Plectonemertidae) from Japan","authors":"Natsumi Hookabe, Y. Fujino, Naoto Jimi, R. Ueshima","doi":"10.1071/IS22066","DOIUrl":"https://doi.org/10.1071/IS22066","url":null,"abstract":"Abstract. Ribbon worms (phylum Nemertea) are found in oceans worldwide; however, only a few inhabit terrestrial, semiterrestrial and freshwater environments. In our study, we describe Acteonemertes orientalis sp. nov., a new species of Plectonemertidae Gibson, 1990 and the first plectonemertid discovered in Japan. The species was found in the supralittoral zone, from which nemerteans have rarely been reported and inhabits areas under rocks, wave-dissipating concrete blocks, and fallen leaves and stocks, along the coast of the Sea of Japan. Multi-locus phylogenetic analyses based on two mitochondrial (16S rRNA and cytochrome c oxidase subunit I) and two nuclear gene markers (18S rRNA and 28S rRNA) revealed that A. orientalis sp. nov. formed a clade with Leptonemertes cf. chalicophora collected from Florida. Although the external and internal morphology of A. orientalis sp. nov. is largely consistent with the generic diagnosis, this species differs in having a large proboscis. Based on the molecular and morphological data, we propose to amend the diagnosis of Acteonemertes by excluding proboscis size. ZooBank: urn:lsid:zoobank.org:pub:BBBE9549-5DCE-424F-9A39-930F8243C28B","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"444 - 456"},"PeriodicalIF":2.2,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46069678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}