Systematics of the Ogyris aenone (Waterhouse, 1902) complex (Lepidoptera: Lycaenidae): threatened Australian butterflies of national conservation significance

IF 1.8 2区 生物学 Q3 EVOLUTIONARY BIOLOGY
E. Beaver, M. Braby, A. Mikheyev
{"title":"Systematics of the Ogyris aenone (Waterhouse, 1902) complex (Lepidoptera: Lycaenidae): threatened Australian butterflies of national conservation significance","authors":"E. Beaver, M. Braby, A. Mikheyev","doi":"10.1071/IS23003","DOIUrl":null,"url":null,"abstract":"ABSTRACT The butterfly genus Ogyris Angas, 1847 consists of several striking but poorly resolved complexes endemic to Australia and New Guinea, many of which have an obligate association with ants. Here, we revise the systematics of the Ogyris aenone (Waterhouse, 1902) complex through an integrative taxonomic approach based on molecular phylogenetic analysis, morphological examination, life histories and ecology. Mitochondrial sequence data based on concatenated cytochrome oxidase I (COI) and cytochrome b (cytb) (total of 1203 bp) for 36 ingroup samples were generated and combined with sequences available on NCBI GenBank for Ogyris. Phylogenetic analysis inferred by maximum likelihood methods resolved five taxa within this group, with one taxon, Ogyris caelestia Beaver & Braby sp. nov., described as a new species and another, O. doddi stat. rev., raised to full species. Phylogenetic relationships among the five taxa are as follows: (O. caelestia + O. aenone) + (O. ianthis + (O. iphis + O. doddi)). This revision brings the number of recognised Ogyris species to 16 and for the tribe Ogyrini to 18. This group of butterflies was found to be scarce – field samples of host trees that had the co-occurrence of both mistletoe and the appropriate attendant ant at 12 locations in eastern and northern Australia revealed low rates of occupancy (<50%, with an overall average of 17%) based on the presence of immature stages of the five butterfly species. The complete life histories, general biology and ecology of all members of this species-group are illustrated and diagnosed for the first time and confusing aspects of the literature are clarified. Several taxa are of conservation significance, including the new species, and future directions are discussed in relation to this. ZooBank: urn:lsid:zoobank.org:pub:FC258ED6-AA1F-4E11-BFE1-D0A612E4F166","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"37 1","pages":"457 - 497"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/IS23003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The butterfly genus Ogyris Angas, 1847 consists of several striking but poorly resolved complexes endemic to Australia and New Guinea, many of which have an obligate association with ants. Here, we revise the systematics of the Ogyris aenone (Waterhouse, 1902) complex through an integrative taxonomic approach based on molecular phylogenetic analysis, morphological examination, life histories and ecology. Mitochondrial sequence data based on concatenated cytochrome oxidase I (COI) and cytochrome b (cytb) (total of 1203 bp) for 36 ingroup samples were generated and combined with sequences available on NCBI GenBank for Ogyris. Phylogenetic analysis inferred by maximum likelihood methods resolved five taxa within this group, with one taxon, Ogyris caelestia Beaver & Braby sp. nov., described as a new species and another, O. doddi stat. rev., raised to full species. Phylogenetic relationships among the five taxa are as follows: (O. caelestia + O. aenone) + (O. ianthis + (O. iphis + O. doddi)). This revision brings the number of recognised Ogyris species to 16 and for the tribe Ogyrini to 18. This group of butterflies was found to be scarce – field samples of host trees that had the co-occurrence of both mistletoe and the appropriate attendant ant at 12 locations in eastern and northern Australia revealed low rates of occupancy (<50%, with an overall average of 17%) based on the presence of immature stages of the five butterfly species. The complete life histories, general biology and ecology of all members of this species-group are illustrated and diagnosed for the first time and confusing aspects of the literature are clarified. Several taxa are of conservation significance, including the new species, and future directions are discussed in relation to this. ZooBank: urn:lsid:zoobank.org:pub:FC258ED6-AA1F-4E11-BFE1-D0A612E4F166
Ogyris aenone(Waterhouse,1902)复合体的系统学(鳞翅目:石首蝶科):具有国家保护意义的受威胁澳大利亚蝴蝶
蝴蝶属Ogyris Angas, 1847由澳大利亚和新几内亚特有的几个引人注目但难以解决的复合体组成,其中许多与蚂蚁有密切的联系。在此,我们通过基于分子系统发育分析、形态检查、生活史和生态学的综合分类方法,修订了Ogyris aenone (Waterhouse, 1902)复合体的系统分类。基于连接的细胞色素氧化酶I (COI)和细胞色素b (cytb)生成36个组内样本的线粒体序列数据(总计1203 bp),并与NCBI GenBank for Ogyris上的序列相结合。通过最大似然方法进行的系统发育分析确定了该组中的5个分类群,其中一个分类群Ogyris caelestia Beaver & Braby sp. nov.被描述为新种,另一个分类群O. doddi stat. rev.被提升为完整种。5个分类群的亲缘关系为:(O. caelestia + O. aenone) + (O. ianthis + (O. iphis + O. doddi))。这一修订将Ogyrini部落的Ogyrini物种数量增加到18个,Ogyrini物种数量增加到16个。在澳大利亚东部和北部的12个地点,槲寄生和相应的伴随蚂蚁共存的寄主树的实地样本显示,基于五种蝴蝶的未成熟阶段的存在,槲寄生的占用率很低(<50%,总体平均为17%)。完整的生活史,一般生物学和生态学的所有成员,这是第一次说明和诊断,并澄清了文献中令人困惑的方面。包括新种在内的几个分类群具有重要的保护意义,并讨论了今后的研究方向。ZooBank: urn: lsid zoobank.org:酒吧:FC258ED6-AA1F-4E11-BFE1-D0A612E4F166
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Invertebrate Systematics
Invertebrate Systematics 生物-动物学
CiteScore
4.30
自引率
9.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Invertebrate Systematics (formerly known as Invertebrate Taxonomy) is an international journal publishing original and significant contributions on the systematics, phylogeny and biogeography of all invertebrate taxa. Articles in the journal provide comprehensive treatments of clearly defined taxonomic groups, often emphasising their biodiversity patterns and/or biological aspects. The journal also includes contributions on the systematics of selected species that are of particular conservation, economic, medical or veterinary importance. Invertebrate Systematics is a vital resource globally for scientists, students, conservation biologists, environmental consultants and government policy advisors who are interested in terrestrial, freshwater and marine systems. Invertebrate Systematics is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信