Journal of Knot Theory and Its Ramifications最新文献

筛选
英文 中文
Framed Thompson Groups 框架Thompson群
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-05-19 DOI: 10.1142/s0218216523400138
A. Kontogeorgis, S. Lambropoulou
{"title":"Framed Thompson Groups","authors":"A. Kontogeorgis, S. Lambropoulou","doi":"10.1142/s0218216523400138","DOIUrl":"https://doi.org/10.1142/s0218216523400138","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47593378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the generalized virtual Goeritz matrix for virtual knots 关于虚拟结的广义虚拟Goeritz矩阵
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-04-12 DOI: 10.1142/s0218216523500384
Kyeonghui Lee, Sera Kim
{"title":"On the generalized virtual Goeritz matrix for virtual knots","authors":"Kyeonghui Lee, Sera Kim","doi":"10.1142/s0218216523500384","DOIUrl":"https://doi.org/10.1142/s0218216523500384","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45785942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Gordian complexes of knots given by 4-move 由4-move给出的高氏结复合体
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-03-31 DOI: 10.1142/s0218216523500347
Danish Ali, Zhiqing Yang, A. Hussain, Muqadar Ali
{"title":"The Gordian complexes of knots given by 4-move","authors":"Danish Ali, Zhiqing Yang, A. Hussain, Muqadar Ali","doi":"10.1142/s0218216523500347","DOIUrl":"https://doi.org/10.1142/s0218216523500347","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42139244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-Legendrian rack colorings of Legendrian knots
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-03-17 DOI: 10.1142/s0218216523500293
Naoki Kimura
{"title":"Bi-Legendrian rack colorings of Legendrian knots","authors":"Naoki Kimura","doi":"10.1142/s0218216523500293","DOIUrl":"https://doi.org/10.1142/s0218216523500293","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41761484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lefschetz open book decompositions of 4–manifolds 4–流形的Lefschetz开卷分解
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-03-10 DOI: 10.1142/s0218216523500268
Abhijeet Ghanwat, Suhas Pandit, A. Selvakumar
{"title":"Lefschetz open book decompositions of 4–manifolds","authors":"Abhijeet Ghanwat, Suhas Pandit, A. Selvakumar","doi":"10.1142/s0218216523500268","DOIUrl":"https://doi.org/10.1142/s0218216523500268","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42323664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One more proof of Vassiliev's conjecture 瓦西里耶夫猜想的又一证明
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-03-06 DOI: 10.1142/s0218216523500256
Viktoriya Trifonova
{"title":"One more proof of Vassiliev's conjecture","authors":"Viktoriya Trifonova","doi":"10.1142/s0218216523500256","DOIUrl":"https://doi.org/10.1142/s0218216523500256","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42925879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability 纤维结的马丘指数和Nakanishi指数相等,ω-可解性
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-02-23 DOI: 10.1142/s0218216523500220
Teruhisa Kadokami
{"title":"The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability","authors":"Teruhisa Kadokami","doi":"10.1142/s0218216523500220","DOIUrl":"https://doi.org/10.1142/s0218216523500220","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46720483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heegaard presentations and Milnor pairings of some knots 一些结的Heegaard表示和Milnor配对
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-02-23 DOI: 10.1142/s0218216523500219
Takumi Ohkura
{"title":"Heegaard presentations and Milnor pairings of some knots","authors":"Takumi Ohkura","doi":"10.1142/s0218216523500219","DOIUrl":"https://doi.org/10.1142/s0218216523500219","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42352300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tri-Plane Diagrams for Simple Surfaces in S4 简单曲面的三平面图
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-02-16 DOI: 10.1142/s0218216523500414
Wolfgang Allred, Manuel Arag'on, Zack Dooley, Alexander Goldman, Yucong Lei, Isaiah Martinez, N. Meyer, Devon Peters, S. Warrander, Ana Wright, Alexander Zupan
{"title":"Tri-Plane Diagrams for Simple Surfaces in S4","authors":"Wolfgang Allred, Manuel Arag'on, Zack Dooley, Alexander Goldman, Yucong Lei, Isaiah Martinez, N. Meyer, Devon Peters, S. Warrander, Ana Wright, Alexander Zupan","doi":"10.1142/s0218216523500414","DOIUrl":"https://doi.org/10.1142/s0218216523500414","url":null,"abstract":"Meier and Zupan proved that an orientable surface $mathcal{K}$ in $S^4$ admits a tri-plane diagram with zero crossings if and only if $mathcal{K}$ is unknotted, so that the crossing number of $mathcal{K}$ is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in $S^4$, proving that $c(mathcal{P}^{n,m}) = max{1,|n-m|}$, where $mathcal{P}^{n,m}$ denotes the connected sum of $n$ unknotted projective planes with normal Euler number $+2$ and $m$ unknotted projective planes with normal Euler number $-2$. In addition, we convert Yoshikawa's table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44987548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum invariant congruence for periodic links 周期连杆的量子不变同余
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2023-02-16 DOI: 10.1142/s0218216523500207
Joonoh Kim, Kyoung-Tark Kim
{"title":"Quantum invariant congruence for periodic links","authors":"Joonoh Kim, Kyoung-Tark Kim","doi":"10.1142/s0218216523500207","DOIUrl":"https://doi.org/10.1142/s0218216523500207","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42674309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信