Tri-Plane Diagrams for Simple Surfaces in S4

IF 0.3 4区 数学 Q4 MATHEMATICS
Wolfgang Allred, Manuel Arag'on, Zack Dooley, Alexander Goldman, Yucong Lei, Isaiah Martinez, N. Meyer, Devon Peters, S. Warrander, Ana Wright, Alexander Zupan
{"title":"Tri-Plane Diagrams for Simple Surfaces in S4","authors":"Wolfgang Allred, Manuel Arag'on, Zack Dooley, Alexander Goldman, Yucong Lei, Isaiah Martinez, N. Meyer, Devon Peters, S. Warrander, Ana Wright, Alexander Zupan","doi":"10.1142/s0218216523500414","DOIUrl":null,"url":null,"abstract":"Meier and Zupan proved that an orientable surface $\\mathcal{K}$ in $S^4$ admits a tri-plane diagram with zero crossings if and only if $\\mathcal{K}$ is unknotted, so that the crossing number of $\\mathcal{K}$ is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in $S^4$, proving that $c(\\mathcal{P}^{n,m}) = \\max\\{1,|n-m|\\}$, where $\\mathcal{P}^{n,m}$ denotes the connected sum of $n$ unknotted projective planes with normal Euler number $+2$ and $m$ unknotted projective planes with normal Euler number $-2$. In addition, we convert Yoshikawa's table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500414","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Meier and Zupan proved that an orientable surface $\mathcal{K}$ in $S^4$ admits a tri-plane diagram with zero crossings if and only if $\mathcal{K}$ is unknotted, so that the crossing number of $\mathcal{K}$ is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in $S^4$, proving that $c(\mathcal{P}^{n,m}) = \max\{1,|n-m|\}$, where $\mathcal{P}^{n,m}$ denotes the connected sum of $n$ unknotted projective planes with normal Euler number $+2$ and $m$ unknotted projective planes with normal Euler number $-2$. In addition, we convert Yoshikawa's table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.
简单曲面的三平面图
Meier和Zupan证明了$S^4$中$\mathcal{K}$的可定向曲面$\mathcal{K}$当且仅当$\mathcal{K}$解结,使得$\mathcal{K}$的交叉数为零时,允许存在零交叉的三平面图。我们确定了S^4$中不可定向无结曲面的最小交叉数,证明了$c(\mathcal{P}^{n,m}) = \max\{1,|n-m|\}$,其中$\mathcal{P}^{n,m}$表示$n$无结的正欧拉数$+2$和$m$无结的正欧拉数$-2$的连通和。此外,我们将Yoshikawa的结曲面ch图表转换为三平面图,找到表中每个曲面的最小桥数,并提供交叉数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
40.00%
发文量
127
审稿时长
4-8 weeks
期刊介绍: This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories). Papers that will be published include: -new research in the theory of knots and links, and their applications; -new research in related fields; -tutorial and review papers. With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信