Nuclear Physics BPub Date : 2024-11-14DOI: 10.1016/j.nuclphysb.2024.116742
Xin-Yu Liu, Rui Guo
{"title":"Mixed single, double, and triple poles solutions for the space-time shifted nonlocal DNLS equation with nonzero boundary conditions via Riemann–Hilbert approach","authors":"Xin-Yu Liu, Rui Guo","doi":"10.1016/j.nuclphysb.2024.116742","DOIUrl":"10.1016/j.nuclphysb.2024.116742","url":null,"abstract":"<div><div>In this paper, we investigate the space-time shifted nonlocal derivative nonlinear Schrödinger (DNLS) equation under nonzero boundary conditions using the Riemann–Hilbert (RH) approach for the first time. To begin with, in the direct scattering problem, we analyze the analyticity, symmetries, and asymptotic behaviors of the Jost eigenfunctions and scattering matrix functions. Subsequently, we examine the coexistence of <em>N</em>-single, <em>N</em>-double, and <em>N</em>-triple poles in the inverse scattering problem. The corresponding residue conditions, trace formulae, <em>θ</em> condition, and symmetry relations of the norming constants are obtained. Moreover, we derive the exact expression for the mixed single, double, and triple poles solutions with the reflectionless potentials by solving the relevant RH problem associated with the space-time shifted nonlocal DNLS equation. Furthermore, to further explore the remarkable characteristics of soliton solutions, we graphically illustrate the dynamic behaviors of several representative solutions, such as three-soliton, two-breather, and soliton-breather solutions. Finally, we analyze the effects of shift parameters through graphical simulations.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116742"},"PeriodicalIF":2.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-12DOI: 10.1016/j.nuclphysb.2024.116738
Shuo-yu Xia
{"title":"Measuring solar neutrino fluxes in direct detection experiments in the presence of light mediators","authors":"Shuo-yu Xia","doi":"10.1016/j.nuclphysb.2024.116738","DOIUrl":"10.1016/j.nuclphysb.2024.116738","url":null,"abstract":"<div><div>The potential of the dark matter direct detection experiments to provide independent measurements on solar neutrino fluxes in the Standard Model and in the presence of the light mediators is studied in this work. We also present the sensitivity of direct detection experiments on light mediators with solar neutrinos. We find that the sensitivities on <sup>8</sup>B and pp neutrino fluxes can reach <span><math><mo>±</mo><mn>10</mn><mtext>%</mtext></math></span> with improved backgrounds and systematic uncertainties and they can be further pushed to <span><math><mo>±</mo><mn>3</mn><mtext>%</mtext></math></span> with a increased exposure. The constraints on light mediators can reach <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo>)</mo></math></span> for the masses of scalar and vector mediators below 10 MeV. However, the presence of scalar or vector mediators could lead to shifts in the best fit value of <sup>8</sup>B fluxes, which will increase the challenges in the precise measurements of solar neutrino fluxes with direct detection experiments.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116738"},"PeriodicalIF":2.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-12DOI: 10.1016/j.nuclphysb.2024.116739
Matteo Bruno , Sebastiano Segreto , Giovanni Montani
{"title":"Generalized uncertainty principle theories and their classical interpretation","authors":"Matteo Bruno , Sebastiano Segreto , Giovanni Montani","doi":"10.1016/j.nuclphysb.2024.116739","DOIUrl":"10.1016/j.nuclphysb.2024.116739","url":null,"abstract":"<div><div>In this work, we show that it is possible to define a classical system associated with a Generalized Uncertainty Principle (GUP) theory via the implementation of a consistent symplectic structure. This provides a solid framework for the classical Hamiltonian formulation of such theories and the study of the dynamics of physical systems in the corresponding deformed phase space.</div><div>By further characterizing the functions that govern non-commutativity in the configuration space using the algebra of angular momentum, we determine a general form for the rotation generator in these theories and crucially, we show that, under these conditions, unlike what has been previously found in the literature at the quantum level, this requirement does not lead to the superselection of GUP models at the classical level.</div><div>Finally, we postulate that a properly defined GUP theory can be correctly interpreted classically if and only if the corresponding quantum commutators satisfy the Jacobi identities, identifying those quantization prescriptions for which this holds true.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116739"},"PeriodicalIF":2.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-12DOI: 10.1016/j.nuclphysb.2024.116740
Wei Chao , Jing-jing Feng , Huai-ke Guo , Tong Li
{"title":"Oscillations of ultralight dark photon into gravitational waves","authors":"Wei Chao , Jing-jing Feng , Huai-ke Guo , Tong Li","doi":"10.1016/j.nuclphysb.2024.116740","DOIUrl":"10.1016/j.nuclphysb.2024.116740","url":null,"abstract":"<div><div>The discovery of gravitational waves (GWs) opens a new window for exploring the physics of the early universe. Identifying the source of GWs and their spectra at present turns out to be important tasks so as to assist the experimental detection of stochastic GW signal. In this paper, we investigate oscillations of the ultralight dark photon (ULDP) into GWs in the dark halo. Assuming dark matter is composed of the ULDP and there are primordial dark magnetic fields (PDMFs) arising from the axion inflation and/or the dark phase transition, then the ULDP can oscillate into the GW when it passes through an environment of PDMFs. We derive the local energy density of GWs in the galaxy cluster induced by the instaneous oscillation of ULDP in the PDMFs. These stochastic local GWs exhibit a pulse-like spectrum, with frequency depending on the mass of the ULDP, and can be detected in Pulsar Timing Arrays (PTAs) or future space-based interferometers. We also find that the low-frequency GW signal observed by the NANOGrav collaboration and other PTA experiments can be addressed by the oscillation of the ULDP in the PDMFs in the early universe.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116740"},"PeriodicalIF":2.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-08DOI: 10.1016/j.nuclphysb.2024.116736
Bhagya. R , Harsha Sreekumar , E. Harikumar , R.P. Malik
{"title":"Constraints, conserved charges and extended BRST algebra for a 3D field-theoretic example for Hodge theory","authors":"Bhagya. R , Harsha Sreekumar , E. Harikumar , R.P. Malik","doi":"10.1016/j.nuclphysb.2024.116736","DOIUrl":"10.1016/j.nuclphysb.2024.116736","url":null,"abstract":"<div><div>We perform the constraint analysis of a three (2 + 1)-dimensional (3D) field-theoretic example for Hodge theory (i) at the <em>classical</em> level within the ambit of Lagrangian formulation, and (ii) at the <em>quantum</em> level within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism. We derive the conserved charges corresponding to the <em>six</em> continuous symmetries of our present theory. These six continuous summery transformations are the nilpotent (anti-)BRST and (anti-)co-BRST symmetries, a unique bosonic symmetry and the ghost-scale symmetry. It turns out that the <em>Noether</em> conserved (anti-)BRST charges are found to be non-nilpotent even though they are derived from the off-shell nilpotent versions of the continuous and infinitesimal (anti-)BRST symmetry transformations. We obtain the nilpotent versions of the (anti-)BRST charges from the non-nilpotent <em>Noether</em> (anti-)BRST charges and discuss the physicality criteria w.r.t. the <em>latter</em> to demonstrate that the operator forms of the first-class constraints (of the <em>classical</em> gauge theory) annihilate the physical states at the quantum level. This observation is consistent with Dirac's quantization conditions for the systems that are endowed with the constraints. We lay emphasis on the existence of a <em>single</em> (anti-)BRST invariant Curci-Ferrari (CF) type restriction in our theory and derive it from various theoretical angles.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116736"},"PeriodicalIF":2.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-08DOI: 10.1016/j.nuclphysb.2024.116737
Carlos R. Ordóñez
{"title":"Steven Weinberg remembrances","authors":"Carlos R. Ordóñez","doi":"10.1016/j.nuclphysb.2024.116737","DOIUrl":"10.1016/j.nuclphysb.2024.116737","url":null,"abstract":"<div><div>I am gladly sharing a few anecdotes of my interactions with Steven Weinberg during many years, from my student days to more recent times.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116737"},"PeriodicalIF":2.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-07DOI: 10.1016/j.nuclphysb.2024.116728
Rabia Saleem, Iqra Shahid, M. Israr Aslam, Abdul Wahab
{"title":"Constant-roll warm inflation within Rastall gravity","authors":"Rabia Saleem, Iqra Shahid, M. Israr Aslam, Abdul Wahab","doi":"10.1016/j.nuclphysb.2024.116728","DOIUrl":"10.1016/j.nuclphysb.2024.116728","url":null,"abstract":"<div><div>This research paper used a newly proposed strategy for finding the exact inflationary solutions to the Friedman equations in the context of Rastall theory of gravity (RTG), which is known as constant-roll warm inflation (CRWI). The dissipative effects produced during WI are studied by introducing a dissipation factor <span><math><mi>Q</mi><mo>=</mo><mfrac><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn><mi>H</mi></mrow></mfrac></math></span>, where Γ is the coefficient of dissipation. We establish the model to evaluate the inflaton field, effective potential requires to produce inflation, and entropy density. These physical quantities lead to developing the important inflationary observables like scalar/tensor power spectrum, scalar spectral index, tensor-to-scalar ratio, and running of spectral-index for two choices of obtained potential that are <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></math></span>. In this study, we focus on the effects of the theory parameter <em>λ</em>, CR parameter <em>β</em>, and dissipation factor <em>Q</em> (under a high dissipative regime for which <em>Q</em>=constant) on inflation, and are constrained to observe the compatibility of our model with Planck TT+lowP (2013), Planck TT, TE, EE+lowP (2015), Planck 2018 and BICEP/Keck 2021 bounds. The results are feasible and interesting up to the 2<em>σ</em> confidence level. Finally, we conclude that the CR technique produces significant changes in the early universe.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116728"},"PeriodicalIF":2.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-07DOI: 10.1016/j.nuclphysb.2024.116734
Jose M. Ladino , Carlos E. Romero-Figueroa , Hernando Quevedo
{"title":"Phase transitions, shadows, and microstructure of Reissner-Nordström-Anti-de-Sitter black holes from a geometrothermodynamic perspective","authors":"Jose M. Ladino , Carlos E. Romero-Figueroa , Hernando Quevedo","doi":"10.1016/j.nuclphysb.2024.116734","DOIUrl":"10.1016/j.nuclphysb.2024.116734","url":null,"abstract":"<div><div>We study the thermodynamic properties of the Reissner-Nordström black hole with cosmological constant, expressed in terms of the curvature radius, using the approach of shadow thermodynamics and the formalism of geometrothermodynamics. We derive explicit expressions for the shadow radius in terms of the horizon, photon sphere, and observer radii. The phase transition structure turns out to strongly depend on the value of the curvature radius, including configurations with zero, one, or two phase transitions. We also analyze the black hole's microscopic structure and find differences between the approaches of thermodynamic geometry and geometrothermodynamics, which are due to the presence of the curvature radius. We impose the important condition that the black hole is a quasi-homogeneous thermodynamic system to guarantee the consistency of the geometrothermodynamic approach.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116734"},"PeriodicalIF":2.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-06DOI: 10.1016/j.nuclphysb.2024.116733
Filippo Caleca , Ettore Remiddi
{"title":"The maxcut of the sunrise with different masses in the continuous Minkoskean dimensional regularisation","authors":"Filippo Caleca , Ettore Remiddi","doi":"10.1016/j.nuclphysb.2024.116733","DOIUrl":"10.1016/j.nuclphysb.2024.116733","url":null,"abstract":"<div><div>We evaluate the <em>maxcut</em> of the two loops sunrise amplitude with three different masses by direct use of the loop momenta in the <em>Minkoskean</em> (as opposed to the usual <em>Euclidean</em>) continuous dimension regularisation, obtaining in that way six related but different functions expressed in the form of one dimensional finite integrals. We then consider the 4th order homogeneous equation valid for the maxcut, and show that for arbitrary dimension <em>d</em> the six functions do satisfy the equation separately. We further discuss the <span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> cases, verifying that only four of them are linearly independent. The equal mass limit is also shortly considered.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116733"},"PeriodicalIF":2.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear Physics BPub Date : 2024-11-05DOI: 10.1016/j.nuclphysb.2024.116732
Yubo Ma , Songtao Zheng , Huaifan Li , Bangquan Li
{"title":"Schottky anomaly of the Kalb-Ramond-de Sitter spacetime","authors":"Yubo Ma , Songtao Zheng , Huaifan Li , Bangquan Li","doi":"10.1016/j.nuclphysb.2024.116732","DOIUrl":"10.1016/j.nuclphysb.2024.116732","url":null,"abstract":"<div><div>In the theory of gravity, the spontaneous breaking of Lorentz symmetry due to the non-minimal coupling between the Kalb-Ramond field and Einstein gravity results in the existence of exactly static and spherically symmetric black hole solutions related to the Lorentz violating parameter. Based on the consideration of the interaction between the black hole and cosmological horizons, this paper studies the thermodynamic properties of Kalb-Ramond-de Sitter (KR-dS) spacetime. The Smarr relation expressed by equivalent thermodynamic quantities is found, and it is proved that the equivalent thermodynamic quantities of the KR-dS spacetime satisfy the universal Euler's theorem. It is discovered that the heat capacity of the KR-dS spacetime with respect to the ratio of the two horizons and the variation curve of the heat capacity with effective temperature possess the characteristics of Schottky specific heat. Moreover, the black hole and the cosmological horizon in the equivalent thermodynamic system are regarded as two different energy levels, and the heat capacity of the KR-dS spacetime is discussed using the general form given by the ordinary two-level system. It is found that the heat capacity of KR-dS spacetime described by equivalent thermodynamic quantities not only conforms to the characteristics of Schottky specific heat but also is consistent with the heat capacity of the ordinary two-level system. This result reflects that when the cosmological constant and the charged carried in the KR-dS spacetime remain unchanged, the heat capacity of the system can be represented by a universal two-level system. By comparing the maximum value of the heat capacity curves, the number of microscopic particles between the two horizons can be estimated, which reflects the quantum properties of the KR-dS spacetime. These studies will open a new perspective to probe the thermodynamics of black holes.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116732"},"PeriodicalIF":2.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}