Oceanography最新文献

筛选
英文 中文
Climate-Relevant Ocean Transport Measurements in the Atlantic and Arctic Oceans 大西洋和北冰洋与气候有关的海洋运输测量
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-04
B. Berx, D. Volkov, J. Baehr, M. Baringer, P Brandt, Kristin Burmeister, S. Cunningham, M. D. de Jong, L. de Steur, Shenfu Dong, E. Frajka‐Williams, G. Goñi, P. Holliday, R. Hummels, R. Ingvaldsen, K. Jochumsen, W. Johns, S. Jónsson, J. Karstensen, D. Kieke, R. Krishfield, M. Lankhorst, K. Larsen, I. L. Le Bras, Craig M. Lee, Feili Li, S. Lozier, A. Macrander, G. McCarthy, C. Mertens, B. Moat, M. Moritz, R. Perez, I. Polyakov, A. Proshutinsky, B. Rabe, M. Rhein, C. Schmid, Ø. Skagseth, D. Smeed, M. Timmermans, Wilken-Jon von Appen, B. Williams, R. Woodgate, I. Yashayaev
{"title":"Climate-Relevant Ocean Transport Measurements in the Atlantic and Arctic Oceans","authors":"B. Berx, D. Volkov, J. Baehr, M. Baringer, P Brandt, Kristin Burmeister, S. Cunningham, M. D. de Jong, L. de Steur, Shenfu Dong, E. Frajka‐Williams, G. Goñi, P. Holliday, R. Hummels, R. Ingvaldsen, K. Jochumsen, W. Johns, S. Jónsson, J. Karstensen, D. Kieke, R. Krishfield, M. Lankhorst, K. Larsen, I. L. Le Bras, Craig M. Lee, Feili Li, S. Lozier, A. Macrander, G. McCarthy, C. Mertens, B. Moat, M. Moritz, R. Perez, I. Polyakov, A. Proshutinsky, B. Rabe, M. Rhein, C. Schmid, Ø. Skagseth, D. Smeed, M. Timmermans, Wilken-Jon von Appen, B. Williams, R. Woodgate, I. Yashayaev","doi":"10.5670/oceanog.2021.supplement.02-04","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-04","url":null,"abstract":"and nutrients all around the globe. Because of their importance in regulating climate, weather, extreme events, sea level, fisheries, and ecosystems, large-scale ocean currents should be monitored continuously. The Atlantic is unique as the only ocean basin where heat is, on average, transported northward in both hemispheres as part of the Atlantic Meridional Overturning Circulation (AMOC). The largely unrestricted connection with the Arctic and Southern Oceans allows ocean currents to exchange heat, freshwater, and other properties with polar latitudes. A number of observational arrays, shown in Figure 1, together with the main circulation features, have been established across the Atlantic and in the Arctic Oceans to improve our understanding of and to monitor changes in the AMOC, as well as large-scale changes in water mass properties (e.g., temperature, salinity) and ocean transports (how much heat or salt is transported by currents). The arrays incorporate multiple observing platforms such as ship-based hydrographic transects, submarine cable measurements, moored sensor arrays (see Figure 2) at a number of latitudes, surface drifters, satellite observations,","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41921293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An Integrated Observing Effort for Sargassum Monitoring and Warning in the Caribbean Sea, Tropical Atlantic, and Gulf of Mexico 加勒比海、热带大西洋和墨西哥湾马尾藻监测和预警综合观测工作
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-26
J. Triñanes, Chuanmin Hu, N. Putman, M. Olascoaga, F. Beron-Vera, G. Goñi, Shuai Zhang
{"title":"An Integrated Observing Effort for Sargassum Monitoring and Warning in the Caribbean Sea, Tropical Atlantic, and Gulf of Mexico","authors":"J. Triñanes, Chuanmin Hu, N. Putman, M. Olascoaga, F. Beron-Vera, G. Goñi, Shuai Zhang","doi":"10.5670/oceanog.2021.supplement.02-26","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-26","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47498050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Visualizing Multi-Hectare Seafloor Habitats with BioCam 使用BioCam可视化多公顷海底栖息地
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-34
B. Thornton, A. Bodenmann, Takaki Yamada, David Stanley, M. Massot-Campos, V. Huvenne, J. Durden, B. Bett, H. Ruhl, D. Newborough
{"title":"Visualizing Multi-Hectare Seafloor Habitats with BioCam","authors":"B. Thornton, A. Bodenmann, Takaki Yamada, David Stanley, M. Massot-Campos, V. Huvenne, J. Durden, B. Bett, H. Ruhl, D. Newborough","doi":"10.5670/oceanog.2021.supplement.02-34","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-34","url":null,"abstract":"when mapping the seafloor. And it is important because the type of data we choose to collect fundamentally changes the science that can follow. Photos taken by cameraequipped autonomous underwater vehicles (AUVs) represent one extreme of the range/resolution trade-off, where sub-centimeter resolutions can be achieved, but typically only from close ranges of 2 m to 3 m. Taking images from higher altitudes increases the area mapped during visual surveys in two ways. First, a larger footprint can be observed in each image, and second, the lower risk of collision with rugged terrains when operating at higher altitudes allows use of flight-style AUVs (e.g., Autosub6000 shown in Figure 1), which are faster and more energy efficient than the hover-capable vehicles typically used for visual surveys. Combined, these factors permit several tens to more than a hundred hectares of the seafloor to be mapped in a single AUV deployment. BioCam is a high-altitude three-dimensional (3D) imaging system that uses a stereo pair of highdynamicrange scientific complementary metaloxide semiconductor (sCMOS) cameras, each with 2,560 × 2,160 pixel resolution, that are mounted in a 4,000 m rated titanium housing. The housing has domed windows to minimize image distortion and also includes low-power electronics for communication, data storage, and control of the dual LED strobes and dual line lasers BioCam uses to acquire 3D imagery. The LED strobes each emit 200,000 lumens of warm hue white light for 4 milli seconds. The lasers each project a green line (525 nm, 1 W Class 4) onto the seafloor at right angles to the AUV’s direction of travel to measure the shape of the terrain. The optical components are arranged along the bottom of the AUV, with an LED and a laser each mounted fore and aft of the cameras (Figure 1). A large distance between these illumination sources and the cameras ensures high-quality images, and high-resolution bathymetry data can be gathered from target altitudes of 6 m to 10 m. The large dynamic range of the sCMOS cameras is necessary for high-altitude imaging because red light attenuates much more strongly than green and blue light in water (Figure 2). A large dynamic range allows detection of low intensity red light with sufficient bit resolution to restore color information, while simultaneously detecting the more intense light of the other color channels without saturation. Range information from the dual lasers allows the distance light travels from the strobes to each detected pixel to be calculated for accurate color rectification (see Figure 2). Rectified color is projected onto the laser point cloud and fused with AUV navigation data to generate texturemapped, 3D visual reconstructions (Bodenmann et al., 2017). The BioCam processing pipeline calibrates the dual laser setup so that quantitative length, area, and volumetric measurements can be made together with estimates of dimensional uncertainty, without the need for artificial field calibr","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44916671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Introduction to the Ocean Observing Supplement to Oceanography 海洋观测导论:海洋学增编
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-01
E. Kappel, K. Juniper, S. Seeyave, Emily A. Smith, M. Visbeck
{"title":"Introduction to the Ocean Observing Supplement to Oceanography","authors":"E. Kappel, K. Juniper, S. Seeyave, Emily A. Smith, M. Visbeck","doi":"10.5670/oceanog.2021.supplement.02-01","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-01","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48636710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing 加州有害藻华监测和警报计划:协调海洋观测的成功案例
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-30
R. Kudela, C. Anderson, H. Ruhl
{"title":"The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing","authors":"R. Kudela, C. Anderson, H. Ruhl","doi":"10.5670/oceanog.2021.supplement.02-30","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-30","url":null,"abstract":"of the food chain in most freshwater and marine systems and provide many positive benefits, including production of about half the oxygen on the planet and transformation of sunlight and inorganic elements into the organic material and energy that drive productive aquatic ecosystems. A subset of the phytoplankton, referred to as harmful algal bloom (HAB) species, such as the domoicacidproducing Pseudo-nitzschia, are persistent threats to coastal resources, local economies, and human and animal health throughout US waters. HABs will likely intensify in response to anthropogenic climate change, and there is an immediate need for more effective strategies for monitoring and communicating the risks of HABs to human and ecosystem health. The ocean science community has developed several novel sensors and methods for monitoring and predicting this diversity of HAB events. These include the Imaging FlowCytobot (IFCB) and various biophysical modeling systems optimized for HAB prediction. Research efforts funded by agencies such as California Sea Grant and the NOAA competitive HAB programs have resulted in advances in understanding and monitoring HABs in California and elsewhere, but outcomes were necessarily focused on specific regions, organisms, and impacts. California HAB researchers, stakeholders, and monitoring programs identified a needed statewide capacity that encompasses existing and emerging HAB issues and more effectively leverages new technologies in a coordinated manner. This led to development of the California Harmful Algal Bloom Monitoring and Alert Program (Cal-HABMAP) with an ambitious set of goals, including studies to normalize the diverse methodologies used in HAB research and monitoring, development of an economic analysis of resources along the California coast and the potential impact of HABs on these resources, and design and development of an integrated network of observations and models that are accessible to all HAB stakeholders. The California Harmful Algal Bloom Monitoring and Alert Program: A Success Story for Coordinated Ocean Observing","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42215781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Science in Service of our Communities 科学为我们的社区服务
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.403
M. Behl
{"title":"Science in Service of our Communities","authors":"M. Behl","doi":"10.5670/oceanog.2021.403","DOIUrl":"https://doi.org/10.5670/oceanog.2021.403","url":null,"abstract":"In the Golden Isles of Georgia, the Gullah art of braiding sweetgrass into baskets can be traced back over 400 years to its West African roots. This skill is passed on from generation to generation, preserving the oral history, sovereignty, and culture of the Gullah people. Local and indigenous coastal communities, like the Gullah-Geechee, have a deep connection with their natural environment as they depend on forests, fisheries, and wildlife resources for their livelihood and culture. These frontline communities are also facing a complex web of challenges that include rising sea levels, coastal erosion, saltwater intrusion, encroaching development and increasing property taxes, and loss of fisheries and other coastal livelihoods. As communities develop strategies to address these complex challenges, they need access to place-based research and education that is unique to their people, culture, and ecology.","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46415579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Stakes Mudbank Chase: At Low Tide, US Southeast Dolphins “Beach” Their Prey 高风险的泥滩追逐:退潮时,美国东南海豚“海滩”他们的猎物
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.404
C. Dybas
{"title":"High-Stakes Mudbank Chase: At Low Tide, US Southeast Dolphins “Beach” Their Prey","authors":"C. Dybas","doi":"10.5670/oceanog.2021.404","DOIUrl":"https://doi.org/10.5670/oceanog.2021.404","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45876734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change 多压力源观测和建模以建立对气候变化对沿海影响的理解和恢复能力
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-31
J. Newton, P. MacCready, S. Siedlecki, D. Manalang, J. Mickett, S. Alin, E. Schumacker, Jennifer Hagen, Stephanie K. Moore, A. Sutton, R. Carini
{"title":"Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change","authors":"J. Newton, P. MacCready, S. Siedlecki, D. Manalang, J. Mickett, S. Alin, E. Schumacker, Jennifer Hagen, Stephanie K. Moore, A. Sutton, R. Carini","doi":"10.5670/oceanog.2021.supplement.02-31","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-31","url":null,"abstract":"Multiple stressors are affecting the Pacific Northwest (PNW) coastal ocean, including harmful algal blooms (HABs), ocean acidification, marine heatwaves, and hypoxia (low oxygen). While these conditions or events are tied to seasonal cycles such as upwelling periods and multiyear cycles such as El Niño/La Niña, they are becoming increasingly frequent and intense. Additionally, they can have devastating impacts on ecosystem health and human wellbeing, shutting down fisheries, stifling the local economy, threatening food security, and inhibiting cultural practices. For example, increasing ocean acidification has affected shellfish growers’ capability to secure reliable product. In 2015, a HAB associated with a marine heatwave shut down crab fisheries from Alaska to Baja for commercial and tribal fishers (McCabe et al., 2016), a closure so impactful that the US Congress included the Fishery Disaster Relief Program for Tribal Fisheries in the Budget Act of 2018. And, an unpredicted hypoxia event in 2015 resulted in the Quinault Indian Nation pulling up crab pots with dead crab. Regional projections indicate increases in warming, ocean acidification, and hypoxia by the end of the century (Siedlecki et al., 2021), so solutions are needed. The challenge of multi-stressor impacts can be addressed by engaging a variety of partners to collect multi-variable observing and forecast data while increasing both scientific knowledge and application of data and information to real-world needs. The Northwest Association of Networked Ocean Observing Systems (NANOOS, http://www.nanoos. org/) helps sustain long-term observations and forecast models to help communities adapt to and plan for variable and changing ocean conditions, thus increasing resilience. NANOOS is the PNW regional coastal ocean observing system of the US Integrated Ocean Observing System (IOOS). It was recently designated a nexus organization for the UN Decade of Ocean Science for Sustainable Development because of its work to sustain and integrate ocean observations and modeling to produce publicly accessible regional data products that help diverse coastal communities ensure safety, build economic resilience, and increase understanding of the coastal ocean. NANOOS, in collaboration with regional partners, provides observations of temperature, salinity, oxygen, chlorophyll, carbon dioxide, pH, and HABs from buoy assets off the PNW coast (Figure 1). These observations also support several models such as LiveOcean, which provides 72-hour projections of ocean variables such as temperature, salinity, Multi-Stressor Observations and Modeling to Build Understanding of and Resilience to the Coastal Impacts of Climate Change","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45918307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring New Technologies for Plankton Observations and Monitoring of Ocean Health 探索浮游生物观测和海洋健康监测新技术
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-09
P. Hablützel, I. Rombouts, Nick Dillen, Rune Lagaisse, J. Mortelmans, Anouk Ollevier, Michiel Perneel, K. Deneudt
{"title":"Exploring New Technologies for Plankton Observations and Monitoring of Ocean Health","authors":"P. Hablützel, I. Rombouts, Nick Dillen, Rune Lagaisse, J. Mortelmans, Anouk Ollevier, Michiel Perneel, K. Deneudt","doi":"10.5670/oceanog.2021.supplement.02-09","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-09","url":null,"abstract":"oceans where they dominate life in terms of abundance and biomass (Bar-On and Milo, 2019). They are essential players in the functioning of marine ecosystems. Among them, microscopic algae called phytoplankton use sunlight to generate biomass from carbon dioxide and water, forming the basis of planktonic food webs, contributing about half of global primary productivity through photosynthesis, and producing about half of the world’s oxygen (Field et al., 1998). Phytoplankton are grazed by slightly larger, yet often still minuscule, animals called zooplankton that in turn are eaten by large predators such as fish or whales. Fish and many seabed-dwelling organisms such as corals or starfish commonly start their lives as zooplankton larvae. But plankton also include protists (flagellates, broadly defined), bacteria, and viruses, far tinier organisms that may feast on zooplankton leftovers or dead cells, or may live as parasites within the bodies of larger plankton cells. DNA analyses have revealed that less than 10% of the estimated total plankton biodiversity is known and formally described today—and most of the unknown species are smaller than the width of a hair (de Vargas et al., 2015). Plankton diversity is not equally distributed across the ocean. At the global scale, plankton differ from pole to pole according to temperature gradients and the degree of seasonal changes in the environment (Righetti et al., 2019). At local scales, nutrient availability, seasonal environmental variation, and interactions among species or with anthropogenic stressors determine plankton community composition (Beaugrand, 2014). Because plankton have short lifespans (often days or weeks) and their internal dynamics are tightly linked to global and local environmental conditions, they react quickly to environmental changes. These changes have cascading effects through the food web and significantly impact, for example, commercial fish recruitment. With the ocean under increasing stress from human activities, measuring changes in plankton communities is critical for addressing ocean health and food security and for tracking changes in nutrient and carbon cycles (including the effectiveness or disruption of the biological carbon pump; Zhang et al., 2018). Plankton diversity can serve as an indicator for tracking anthropogenic environmental disturbances brought about by the maritime industry (e.g., Figure 1), eutrophication, industrial wastewater, invasive species, overfishing, TOPIC 2. ECOSYSTEMS AND THEIR DIVERSITY","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43330798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Emerging, Low-Cost Ocean Observing Technologies to Democratize Access to the Ocean 新兴的低成本海洋观测技术,实现海洋准入民主化
IF 2.8 4区 地球科学
Oceanography Pub Date : 2021-12-01 DOI: 10.5670/oceanog.2021.supplement.02-35
J. Butler, Camille Pagniello
{"title":"Emerging, Low-Cost Ocean Observing Technologies to Democratize Access to the Ocean","authors":"J. Butler, Camille Pagniello","doi":"10.5670/oceanog.2021.supplement.02-35","DOIUrl":"https://doi.org/10.5670/oceanog.2021.supplement.02-35","url":null,"abstract":"","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46489494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信