Physics of the Earth and Planetary Interiors最新文献

筛选
英文 中文
Azimuthal seismic anisotropy of the Iran plateau: Insights from ambient noise analysis 伊朗高原方位地震各向异性:环境噪声分析的启示
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-11-13 DOI: 10.1016/j.pepi.2024.107280
Ramin Movaghari , Javan Doloei Gholam , Khaled Hessami
{"title":"Azimuthal seismic anisotropy of the Iran plateau: Insights from ambient noise analysis","authors":"Ramin Movaghari ,&nbsp;Javan Doloei Gholam ,&nbsp;Khaled Hessami","doi":"10.1016/j.pepi.2024.107280","DOIUrl":"10.1016/j.pepi.2024.107280","url":null,"abstract":"<div><div>The continental lithosphere of the Iran plateau is complicated by many tectonic processes that affected both the Arabian and Eurasian plates before and after their convergence. To investigate the deformation mechanisms of the crust and mantle lithosphere, we directly invert Rayleigh wave phase velocity dispersion data (5–60 s) for a 3-D shear wave velocity and depth-dependent azimuthal anisotropy model using ambient noise tomography from the surface down to 100 km with data recorded in 84 seismic stations. The shear wave velocity maps reveal a reasonable match with geological domains and agree with those previously published. The projections of the fast axes of Rayleigh wave azimuthal anisotropy in the subcrustal lithosphere allowed us to divide the Iran plateau into two main regions: the Zagros Mountains and the rest of the country. Furthermore, the anisotropy pattern illustrates a prominent contrast between the NW and SE Zagros Mountains. In both the crust and subcrustal lithosphere, the NW Zagros shows relatively weak but coherent azimuthal anisotropy in the NE-SW direction (i.e., orogen-perpendicular orientation). We ascribe the orogen-perpendicular fast axis in NW Zagros to stress-induced anisotropy. However, in the SE Zagros, the north-northwest orientations of the fast axes are attributed to the N-S trending basement structures, which are inherited from the Pan-African construction phase. The azimuthal anisotropy pattern displays an overall NW-SE trend dominant over the rest of the country. This NW-SE direction can be explained by an NW-SE extension due to transpressional deformation beneath Central Iran resulting from the oblique indentation of the Arabian plate into Eurasia. Nevertheless, strike-parallel anisotropy directions along the western and central Alborz Mountains throughout the entire lithosphere may be related to pure shear deformation. The persistence of azimuthal anisotropy patterns in the crust and subcrustal lithosphere implies that the whole lithosphere deforms coherently in the NW Zagros, west Iran, the Alborz Mountains, and across the Lut block. However, strong contrasts between the crustal and subcrustal pattern of anisotropy observed in the SE Zagros as well as in north Central Iran suggest that in these regions, the crust and the underlying mantle lithosphere do not deform coherently. A strong correlation between the Rayleigh wave anisotropy directions at subcrustal depths and the anisotropy patterns estimated from the shear-wave core phases suggests that in many places over the plateau, the SKS directions may have been dominated by the deformation of the lithosphere.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"357 ","pages":"Article 107280"},"PeriodicalIF":2.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithospheric magnetic structure of cratonic regions in Central-Eastern China inferred from aeromagnetic anomalies: Insights into magnetization in the uppermost mantle 从航空磁异常推断中国中东部板块构造区域的岩石圈磁结构:对最上层地幔磁化的启示
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-11-06 DOI: 10.1016/j.pepi.2024.107276
Yuanyuan Li , Yushan Yang , Jiwen Teng , Tianyou Liu , Yafen Yan
{"title":"Lithospheric magnetic structure of cratonic regions in Central-Eastern China inferred from aeromagnetic anomalies: Insights into magnetization in the uppermost mantle","authors":"Yuanyuan Li ,&nbsp;Yushan Yang ,&nbsp;Jiwen Teng ,&nbsp;Tianyou Liu ,&nbsp;Yafen Yan","doi":"10.1016/j.pepi.2024.107276","DOIUrl":"10.1016/j.pepi.2024.107276","url":null,"abstract":"<div><div>Most of the subcontinental lithospheric mantle (SCLM) beneath Proterozoic cratons consists of refertilized Archaean SCLM. Variations in SCLM composition and its physical properties significantly affect the stabilization and preservation of the ancient continents. In this paper, aeromagnetic data are analyzed to reveal the magnetic structure of the lithospheric mantle beneath two major Precambrian blocks in central-eastern China, i.e., the Upper Yangtze Block (UYB) and Ordos Block (OB). After being reduced to the pole, the Fourier power spectrum of the aeromagnetic anomalies is calculated to determine the depth to magnetic sources. Considering the lower spatial resolution of the power spectral analysis in dealing with the long-wavelength aeromagnetic anomalies, we applied the scale-normalized continuous wavelet transform (CWT) on the magnetic data to trace the magnetic sources, with special focus on deeper ones. Synthetical model of a magnetic layer and application to the profile data validate the effectiveness of this scale normalization scheme in improving the wavenumber/spatial resolution in the CWT scalogram.</div><div>In order to present a detailed magnetic structure, we carried out 2.5D forward modeling work on the magnetic data of a 2280 km-long nearly N-S profile across the UYB and OB. Due to the inherent ambiguity in the modeling results, the CWT-based spectral analysis is successfully adopted to provide source depth constraints for the initial model. The constrained forward modeling results indicate strong inhomogeneities among main tectonic blocks of studied area, like humans have different fingerprints. The magnetization of OB is larger than that of UYB since its Archean to Paleoproterozoic metamorphic basement are widely exposed at the surface, while the Precambrian basement of UYB is mostly overlain by unmetamorphosed Sinian cover and weakly metamorphosed Neoproterozoic strata. The most interesting aspect is that deep-seated magnetic sources might reside in the uppermost mantle of UYB and OB, suggesting vertical layering in the SCLM in cold cratonic regions.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"357 ","pages":"Article 107276"},"PeriodicalIF":2.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex deformation mechanisms of the crust in eastern and northeastern Tibetan Plateau: Insights from ambient noise tomography that captures azimuthal anisotropy 青藏高原东部和东北部地壳的复杂变形机制:捕捉方位各向异性的环境噪声层析成像的启示
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-11-01 DOI: 10.1016/j.pepi.2024.107269
Tengfei Wu , Yujin Hua , Meng Chen , Xianfeng Luo
{"title":"Complex deformation mechanisms of the crust in eastern and northeastern Tibetan Plateau: Insights from ambient noise tomography that captures azimuthal anisotropy","authors":"Tengfei Wu ,&nbsp;Yujin Hua ,&nbsp;Meng Chen ,&nbsp;Xianfeng Luo","doi":"10.1016/j.pepi.2024.107269","DOIUrl":"10.1016/j.pepi.2024.107269","url":null,"abstract":"<div><div>Comprehensive analysis of geodetic and seismological study findings in eastern and northeastern Tibetan Plateau (TP) can offer new insights into regional tectonic movements, crustal material properties, and crustal deformation. In this study, to uncover the crustal deformation mechanisms in eastern and northeastern TP, we constructed an azimuthal anisotropy model through ambient noise tomography that captures azimuthal anisotropy. Based on our inverted model and insights from previous geodetic and seismological studies, we reveal the deformation patterns across various blocks within the regional crust. In eastern TP, the deformation of the Lhasa and Qiangtang blocks is predominantly controlled by the subduction of the Indian lithosphere and the strike of regional large-scale fault systems. The Songpan-Ganzi terrane is primarily driven by W-<em>E</em>-oriented tectonic movements of the plateau crustal materials, further impacted by the obstruction of the rigid Sichuan Basin (SCB), leading to clockwise rotational deformation features. The continuous uplift and expansion of the TP have subjected the Qaidam Basin (QDB) to intense crustal shortening and horizontal compression. Moreover, multi-stage tectonic activities have resulted in the redistribution of tectonic stress within the crust of QDB over time, thus developing an NW-SE-oriented deformation pattern. In northeastern TP, the deformation of the Qilian and West Qinling orogens is primarily driven by the southward subduction of the Alxa block (ALB) and associated orogenic activities. The complex deformation of the ALB is mainly related to the closure of the Paleo-Tethys Ocean and subsequent plate collision and suturing within the Asian continent, while it is also affected by the edge effects of the North China Craton (NCC). The crust deformation of the SCB is primarily governed by the intense compression stress caused by the collision between the Indian and Eurasian plates. In contrast, the deformation observed in the Ordos Basin (OB) is comparatively mild, influenced by local uplifts at the edges, differential tectonic stress transmitted by orogenic activities, and the overall stability of the NCC lithosphere. In addition, the deformation in the uppermost mantle of the SCB and OB is mainly driven by regional plate motion and mantle flow.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107269"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal and magnetic evolution of an Earth-like planet with a basal magma ocean 具有基底岩浆海洋的类地行星的热演化和磁演化
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-10-09 DOI: 10.1016/j.pepi.2024.107267
Victor Lherm , Miki Nakajima , Eric G. Blackman
{"title":"Thermal and magnetic evolution of an Earth-like planet with a basal magma ocean","authors":"Victor Lherm ,&nbsp;Miki Nakajima ,&nbsp;Eric G. Blackman","doi":"10.1016/j.pepi.2024.107267","DOIUrl":"10.1016/j.pepi.2024.107267","url":null,"abstract":"<div><div>Earth's geodynamo has operated for over 3.5 billion years. The magnetic field is currently powered by thermocompositional convection in the outer core, which involves the release of light elements and latent heat as the inner core solidifies. However, since the inner core nucleated no more than 1.5 billion years ago, the early dynamo could not rely on these buoyancy sources. Given recent estimates of the thermal conductivity of the outer core, an alternative mechanism may be required to sustain the geodynamo prior to nucleation of the inner core. One possibility is a silicate dynamo operating in a long-lived basal magma ocean. Here, we investigate the structural, thermal, buoyancy, and magnetic evolution of an Earth-like terrestrial planet. Using modern equations of state and melting curves, we include a time-dependent parameterization of the compositional evolution of an iron-rich basal magma ocean. We combine an internal structure integration of the planet with energy budgets in a coupled core, basal magma ocean, and mantle system. We determine the thermocompositional convective stability of the core and the basal magma ocean, and assess their respective dynamo activity using entropy budgets and magnetic Reynolds numbers. Our conservative nominal model predicts a transient basal magma ocean dynamo followed by a core dynamo after 1 billion years. The model is sensitive to several parameters, including the initial temperature of the core-mantle boundary, the parameterization of mantle convection, the composition of the basal magma ocean, the radiogenic content of the planet, as well as convective velocity and magnetic scaling laws. We use the nominal model to constrain the range of basal magma ocean electrical conductivity and core thermal conductivity that sustain a dynamo. This highlights the importance of constraining the parameters and transport properties that influence planetary evolution using experiments and simulations conducted at pressure, temperature, and composition conditions found in planetary interior, in order to reduce model degeneracies.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107267"},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3-D P-wave velocity structure of the upper mantle beneath eastern Indonesia from body wave tomography 通过体波层析成像研究印度尼西亚东部地下上地幔的三维 P 波速度结构
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-10-02 DOI: 10.1016/j.pepi.2024.107266
Sandy Kurniawan Suhardja , Mohamad Ramdhan , Muhammad Iqbal Sulaiman , Bayu Pranata , Edi Hidayat , Sri Widiyantoro , Nicholas Rawlinson , Titi Anggono , Syuhada , Febty Febriani , Cinantya Nirmala Dewi , Mohammad Hasib , Jajat Jatnika , Aditya Dwi Prasetio , Wiko Setyonegoro
{"title":"3-D P-wave velocity structure of the upper mantle beneath eastern Indonesia from body wave tomography","authors":"Sandy Kurniawan Suhardja ,&nbsp;Mohamad Ramdhan ,&nbsp;Muhammad Iqbal Sulaiman ,&nbsp;Bayu Pranata ,&nbsp;Edi Hidayat ,&nbsp;Sri Widiyantoro ,&nbsp;Nicholas Rawlinson ,&nbsp;Titi Anggono ,&nbsp;Syuhada ,&nbsp;Febty Febriani ,&nbsp;Cinantya Nirmala Dewi ,&nbsp;Mohammad Hasib ,&nbsp;Jajat Jatnika ,&nbsp;Aditya Dwi Prasetio ,&nbsp;Wiko Setyonegoro","doi":"10.1016/j.pepi.2024.107266","DOIUrl":"10.1016/j.pepi.2024.107266","url":null,"abstract":"<div><div>Eastern Indonesia's tectonic setting is well known for its complexity and intense seismic activity. Controlled by several major and minor plates, including the Eurasian, Australian, and Pacific plates, this region is famous for its U-shaped subduction system beneath the Banda Arc. To better understand the architecture of the underlying structure in this region, we performed body-wave travel time tomography using ten years of catalog data provided by the Indonesian Agency for Meteorology, Climatology, and Geophysics. We utilize 9729 events in total, from which 46,446 P-wave arrival times were extracted. We used a double difference method to relocate the initial event catalog, which produced a pattern of seismicity consistent with a curved subduction system. Our tomographic model reveals a high velocity band between 90 and 240 km depth in the upper mantle, which is interpreted to be a concave dipping lithospheric slab that is parallel to the present-day Banda arc. Our results also show that lithosphere subducting from the north and south starts to collide at a depth of 300–350 km and becomes shallower further east. Apparent discontinuities in the high velocity band and a corresponding lack of seismicity supports the presence of a slab tear to the west of Seram. A dipping high velocity structure that is present from south to north beneath the island of Timor represents a subducting slab that dips more steeply beyond a depth of 150–200 km, which appears consistent with slab roll-back. Our tomographic model also shows evidence of back arc thrusting to the north of Sumbawa and Flores Islands in the form of a south-dipping higher velocity band at shallow depth. Furthermore, our tomographic models also reveal the possible presence of underthrust continental forearc in the form of a thin higher velocity anomaly that connects the backarc thrust and northward dipping lithosphere slab in the Timor area. Finally, a zone of low velocity above the higher velocity slab is clearly seen beneath Seram Island at a depth of ∼100 km and may represent a partial melting zone.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107266"},"PeriodicalIF":2.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinvestigating the Dufek Intrusion, through joint gravity and magnetic models 通过重力和磁力联合模型重新研究杜菲克侵入区
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-10-02 DOI: 10.1016/j.pepi.2024.107268
Tom A. Jordan, Teal R. Riley
{"title":"Reinvestigating the Dufek Intrusion, through joint gravity and magnetic models","authors":"Tom A. Jordan,&nbsp;Teal R. Riley","doi":"10.1016/j.pepi.2024.107268","DOIUrl":"10.1016/j.pepi.2024.107268","url":null,"abstract":"<div><div>The Dufek layered mafic intrusion represents the only exposed, deep-seated, part of the Ferrar Large Igneous Province, which extends &gt;3500 km across Antarctica and into parts of Tasmania and New Zealand. The Dufek Intrusion is in a key position at the boundary between the Jurassic Weddell Sea Rift System and the East Antarctic Craton. It may have been a conduit for some of the Ferrar magmas, or a deep-seated equivalent to the shallower sills seen in other sectors of Antarctica. Although a significant intrusion, equivalent at least to the Stillwater complex in the USA, its true scale and geometry, along with the relative timing of emplacement is disputed. We present new 3D models of gravity and magnetic data which constrain the geometry of the intrusion, show how separate lobes of the intrusion are linked and identify a possible extension of the intrusion to the east. We also discuss the implications for how the intrusion may have been emplaced.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107268"},"PeriodicalIF":2.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sensitivity of lowermost mantle anisotropy to past mantle convection 最下地幔各向异性对过去地幔对流的敏感性
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-09-24 DOI: 10.1016/j.pepi.2024.107264
Jamie Ward , Andrew M. Walker , Andy Nowacki , James Panton , J Huw Davies
{"title":"The sensitivity of lowermost mantle anisotropy to past mantle convection","authors":"Jamie Ward ,&nbsp;Andrew M. Walker ,&nbsp;Andy Nowacki ,&nbsp;James Panton ,&nbsp;J Huw Davies","doi":"10.1016/j.pepi.2024.107264","DOIUrl":"10.1016/j.pepi.2024.107264","url":null,"abstract":"<div><div>It is widely believed that seismic anisotropy in the lowermost mantle is caused by the flow-induced alignment of anisotropic crystals such as post-perovskite. What is unclear, however, is whether the anisotropy observations in the lowermost mantle hold information about past mantle flow, or if they only inform us about the present-day flow field. To investigate this, we compare the general and seismic anisotropy calculated using Earth-like mantle convection models where one has a time-varying flow, and another where the present-day flow is constant throughout time. To do this, we track a post-perovskite polycrystal through the flow fields and calculate texture development using the sampled strain rate and the visco-plastic self-consistent approach. We assume dominant slip on (001) and test the effect of the relative importance of this glide plane over others by using three different plasticity models with different efficiencies at developing texture. We compare the radial anisotropy parameters and the anisotropic components of the elastic tensors produced by the flow field test cases at the same location. We find, under all ease-of-texturing cases, the radial anisotropy is very similar (difference <span><math><mo>&lt;</mo><mn>2</mn><mo>%</mo></math></span>) in the majority of locations and in some regions, the difference can be very large (<span><math><mo>&gt;</mo><mn>10</mn><mo>%</mo></math></span>). The same is true when comparing the elastic tensors directly. Varying the ease-of-texture development in the crystal aggregate suggests that easier-to-texture material may hold a stronger signal from past flow than harder-to-texture material. Our results imply that broad-scale observations of seismic anisotropy such as those from seismic tomography, 1-D estimates and normal mode observations, will be mainly sensitive to present-day flow. Shear-wave splitting measurements, however, could hold information about past mantle flow. In general, mantle memory expressed in anisotropy may be dependent on path length in the post-perovskite stability field. Our work implies that, as knowledge of the exact causative mechanism of lowermost mantle anisotropy develops, we may be able to constrain both present-day and past mantle convection.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107264"},"PeriodicalIF":2.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shock-induced phase transitions in siderite up to 90 GPa and implications for deep carbon cycle 高达 90 GPa 的菱铁矿中冲击诱导的相变及其对深层碳循环的影响
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-09-21 DOI: 10.1016/j.pepi.2024.107265
Yishi Wang , Yu Hu , Gang Yang , Zehui Li , Xun Liu , Haijun Huang , Toshimori Sekine
{"title":"Shock-induced phase transitions in siderite up to 90 GPa and implications for deep carbon cycle","authors":"Yishi Wang ,&nbsp;Yu Hu ,&nbsp;Gang Yang ,&nbsp;Zehui Li ,&nbsp;Xun Liu ,&nbsp;Haijun Huang ,&nbsp;Toshimori Sekine","doi":"10.1016/j.pepi.2024.107265","DOIUrl":"10.1016/j.pepi.2024.107265","url":null,"abstract":"<div><div>The phase stability of carbonates under mantle conditions is important for understanding the global carbon cycle. In this study, the Hugoniot data of a natural siderite (FeCO<sub>3</sub>) were measured up to 90 GPa using the plane-plate impact method. Two successive phase transitions were observed at 38–40 GPa and 65–69 GPa, respectively. In comparison with the static compression results, the first phase transition was identified as a spin transition, and the second is attributed to the self-redox reaction. The volume change during the self-redox transition is consistent with the reaction products of tetrairon orthocarbonate Fe<sub>4</sub>C<sub>3</sub>O<sub>12</sub> and diamond. Using the measured Hugoniot data, we estimated the density of Fe<sub>4</sub>C<sub>3</sub>O<sub>12</sub> along the lower mantle conditions and found it to be higher than the seismic values. Our results suggest siderite plays an important role in the deep carbon cycle.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107265"},"PeriodicalIF":2.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A potential deep geothermal reservoir in eastern Ladakh as inferred from the upper crustal geoelectric structure of the region 从拉达克地区上地壳地电结构推断出该地区东部潜在的深层地热储层
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-09-20 DOI: 10.1016/j.pepi.2024.107263
G. Pavankumar, A. Manglik, M. Demudu Babu, Raj Sunil Kandregula, Akashdeep Barman
{"title":"A potential deep geothermal reservoir in eastern Ladakh as inferred from the upper crustal geoelectric structure of the region","authors":"G. Pavankumar,&nbsp;A. Manglik,&nbsp;M. Demudu Babu,&nbsp;Raj Sunil Kandregula,&nbsp;Akashdeep Barman","doi":"10.1016/j.pepi.2024.107263","DOIUrl":"10.1016/j.pepi.2024.107263","url":null,"abstract":"<div><div>The Ladakh Himalaya is a repository of the evolutionary history of the India-Eurasia convergent plate margin. We present the results of a magnetotelluric (MT) study carried out in Eastern Ladakh along a 40-km-long profile traversing across various tectonic domains of this plate margin. We modeled the MT dataset by two-dimensional (2-D) and three-dimensional (3-D) inversion algorithms. The upper crustal geoelectric model obtained by 2-D inversion of distortion corrected and decomposed data of 18 sites shows an excellent match with the surface geology. In this model, the Indus Suture Zone (ISZ) appears as a steeply dipping contact and the Ladakh batholith is about 10 to 12 km thick. The model yields a prominent electrical conductor of ∼6 km diameter at 4 km depth beneath the Tso Morari Crystallines with an offshoot of a small conductor that rises upward along the ISZ. The geoelectrical model obtained by 3-D inversion is broadly consistent with the 2-D model but also reveals off-profile features and a connectivity of the shallow conductors with a widespread conductive zone at deeper level of the upper crust. In view of the presence of Puga and Chumathang hot springs towards west and Demchok hot springs towards east of our study region, we infer these conductors to be representing a potential major geothermal reservoir system connected to the widespread deeper conductive zone of partial melts, which extends from the southern Tibet to the eastern Ladakh region.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107263"},"PeriodicalIF":2.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the relationship between paleomagnetic secular variation and excursions – Records from MIS 11 and 12 – ODP Leg 172, western North Atlantic Ocean 古地磁世时变化与偏移之间的关系--MIS 11 和 12 的记录--ODP 第 172 工段,北大西洋西部
IF 2.4 3区 地球科学
Physics of the Earth and Planetary Interiors Pub Date : 2024-09-18 DOI: 10.1016/j.pepi.2024.107249
Steve Lund , Gary Acton , Brad Clement , Makoto Okada , Lloyd Keigwin
{"title":"On the relationship between paleomagnetic secular variation and excursions – Records from MIS 11 and 12 – ODP Leg 172, western North Atlantic Ocean","authors":"Steve Lund ,&nbsp;Gary Acton ,&nbsp;Brad Clement ,&nbsp;Makoto Okada ,&nbsp;Lloyd Keigwin","doi":"10.1016/j.pepi.2024.107249","DOIUrl":"10.1016/j.pepi.2024.107249","url":null,"abstract":"<div><p>This study has developed paleomagnetic secular variation (PSV) records from Sites 1060, 1061, 1062, and 1063 (ODP Leg 172) from the western North Atlantic Ocean during MIS 11–12 (374–478 ka). We have identified 46 inclination features and 49 declination features that can be correlated among the records. We have also developed relative paleointensity records and identified 13 paleointensity features that can be correlated among them. These features can also be dated using the oxygen-isotope dated Global relative-paleointensity record PISO-1500 of Channell et al. (2009). There is one excursion located in these four records. We use the name Levantine/Bermuda Excursion developed elsewhere by Ryan (1972) and Channell et al. (2017). The Excursion occurred at 408 ± 4 ka. The excursion is recorded at Sites 1061, 1062, and 1063. The most detailed excursion records occur at Site 1062 where we have both shipboard PSV records and one u-channel PSV record of the excursion. The excursion has two intervals of excursional directions, one short interval (∼I ky) followed by a long interval (∼5 ky). Both intervals have counter-clockwise looping of the excursional directions and the excursion is considered to be a Class I Excursion (Lund et al., 2005). Statistical study of the PSV records after removal of the excursion directions has identified two characteristics of the ‘normal’ PSV. The first feature is a long-term (&gt;10<sup>4</sup> yrs) deviation in inclination and declination averages from the overall site averages. These deviations suggest some type on long-term memory in the regional dynamo process. The second feature is the variation in PSV angular dispersion (a measure of directional variability). The angular dispersion is quite low (∼12°) for most of the 374–478 ka interval. But, there is a short (∼8 ky) interval with angular dispersion more than double the amplitude (∼25°-30°). This interval has a sharp (&lt;3 ky) onset and termination, This interval contains the Levantine/Bermuda Excursion. Such high-angular dispersion intervals with associated excursions and low paleointensity appear to be regular distinctive features of the Brunhes Chron PSV.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"356 ","pages":"Article 107249"},"PeriodicalIF":2.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信