Physiological and Biochemical Zoology最新文献

筛选
英文 中文
IGF-1 Levels Increase during an Immune but Not an Oxidative Challenge in an Avian Model, the Japanese Quail 禽类模型日本鹌鹑在面临免疫挑战时 IGF-1 水平会升高,而在面临氧化挑战时不会升高
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-12-21 DOI: 10.1086/728771
Bibiana Montoya, Roxana Torres, América Hernández, Vianey Alejandro
{"title":"IGF-1 Levels Increase during an Immune but Not an Oxidative Challenge in an Avian Model, the Japanese Quail","authors":"Bibiana Montoya, Roxana Torres, América Hernández, Vianey Alejandro","doi":"10.1086/728771","DOIUrl":"https://doi.org/10.1086/728771","url":null,"abstract":"Physiological and Biochemical Zoology, Ahead of Print. <br/>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infection Causes Trade-Offs between Development and Growth in Larval Amphibians. 感染导致两栖动物幼虫在发育和生长之间进行权衡
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-11-01 Epub Date: 2023-11-10 DOI: 10.1086/727729
Marissa Wright, Logan Oleson, Rebecca Witty, Kelley A Fritz, Lucas J Kirschman
{"title":"Infection Causes Trade-Offs between Development and Growth in Larval Amphibians.","authors":"Marissa Wright, Logan Oleson, Rebecca Witty, Kelley A Fritz, Lucas J Kirschman","doi":"10.1086/727729","DOIUrl":"10.1086/727729","url":null,"abstract":"<p><p>AbstractTrade-offs between life history traits are context dependent; they vary depending on environment and life stage. Negative associations between development and growth often characterize larval life stages. Both growth and development consume large parts of the energy budget of young animals. The metabolic rate of animals should reflect differences in growth and developmental rates. Growth and development can also have negative associations with immune function because of their costs. We investigated how intraspecific variation in growth and development affected the metabolism of larval amphibians and whether intraspecific variation in growth, development, and metabolic rate could predict mortality and viral load in larvae infected with ranavirus. We also compared the relationship between growth and development before and after infection with ranavirus. We hypothesized that growth and development would affect metabolism and predicted that each would have a positive correlation with metabolic rate. We further hypothesized that allocation toward growth and development would increase ranavirus susceptibility and therefore predicted that larvae with faster growth, faster development, and higher metabolic rates would be more likely to die from ranavirus and have higher viral loads. Finally, we predicted that growth rate and developmental rate would have a negative association. Intraspecific variation in growth rate and developmental rate did not affect metabolism. Growth rate, developmental rate, and metabolism did not predict mortality from ranavirus or viral load. Larvae infected with ranavirus exhibited a trade-off between developmental rate and growth rate that was absent in uninfected larvae. Our results indicate a cost of ranavirus infection that is potentially due to both the infection-induced anorexia and the cost of infection altering priority rules for resource allocation.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43520404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA Methylation and Counterdirectional Pigmentation Change following Immune Challenge in a Small Ectotherm. 小异温动物免疫攻击后DNA甲基化和反向色素沉着变化
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-11-01 Epub Date: 2023-10-19 DOI: 10.1086/727692
David R Tevs, Justin A Mukhalian, Emma Simpson, Christian L Cox, Aaron W Schrey, Lance D McBrayer
{"title":"DNA Methylation and Counterdirectional Pigmentation Change following Immune Challenge in a Small Ectotherm.","authors":"David R Tevs, Justin A Mukhalian, Emma Simpson, Christian L Cox, Aaron W Schrey, Lance D McBrayer","doi":"10.1086/727692","DOIUrl":"10.1086/727692","url":null,"abstract":"<p><p>AbstractBy allowing for increased absorption or reflectance of solar radiation, changes in pigmentation may assist ectotherms in responding to immune challenges by enabling a more precise regulation of behavioral fever or hypothermia. Variation in epigenetic characteristics may also assist in regulating immune-induced pigmentation changes and managing the body's energetic reserves following infection. Here, we explore how dorsal pigmentation, metabolic rate, and DNA methylation in the Florida scrub lizard (<i>Sceloporus woodi</i>) respond to two levels of immune challenge across two habitat types. We found changes in pigmentation that are suggestive of efforts to assist in behavioral fever and hypothermia depending on the intensity of immune challenge. We also found correlations between DNA methylation in liver tissue and pigmentation change along the dorsum, indicating that color transitions may be part of a multifaceted immune response across tissue types. The relationship between immune response and metabolic rate supports the idea that energetic reserves may be conserved for the costs associated with behavioral fever when immune challenge is low and the immune functions when immune challenge is high. While immune response appeared to be unaffected by habitat type, we found differences in metabolic activity between habitats, suggesting differences in the energetic costs associated with each. To our knowledge, these results present the first potential evidence of pigmentation change in ectotherms in association with immune response. The relationship between immune response, DNA methylation, and pigmentation change also highlights the importance of epigenetic mechanisms in organism physiology.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46591660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leukocyte Concentrations Are Isometric in Reptiles Unlike in Endotherms. 与吸热动物不同,爬行动物的白细胞浓度是等距的
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-11-01 Epub Date: 2023-10-13 DOI: 10.1086/727050
Leo E Fletcher, Lynn B Martin, Cynthia J Downs
{"title":"Leukocyte Concentrations Are Isometric in Reptiles Unlike in Endotherms.","authors":"Leo E Fletcher, Lynn B Martin, Cynthia J Downs","doi":"10.1086/727050","DOIUrl":"10.1086/727050","url":null,"abstract":"<p><p>AbstractHow do large and small reptiles defend against infections, given the consequences of body mass for physiology and disease transmission? Functionally equivalent mammalian and avian granulocytes increased disproportionately with body mass (i.e., scaled hypermetrically), such that large organisms had higher concentrations than expected by a prediction of proportional protection across sizes. However, as these scaling relationships were derived from endothermic animals, they do not necessarily inform the scaling of leukocyte concentration for ectothermic reptiles that have a different physiology and evolutionary history. Here, we asked whether and how lymphocyte and heterophil concentrations relate to body mass among more than 120 reptile species. We compared these relationships to those found in birds and mammals and to existing scaling frameworks (i.e., protecton, complexity, rate of metabolism, or safety factor hypotheses). Both lymphocyte and heterophil concentrations scaled almost isometrically among reptiles. In contrast, functionally equivalent granulocytes scaled hypermetrically and lymphocytes scaled isometrically in birds and mammals. Life history traits were also poor predictors of variation in reptilian heterophil and lymphocyte concentrations. Our results provide insight into differences in immune protection in birds and mammals relative to that in reptiles through a comparative lens. The shape of scaling relationships differs, which should be considered when modeling disease dynamics among these groups.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49574077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Announcement: Physiological and Biochemical Zoology Is Changing Its Name to Ecological and Evolutionary Physiology. 公告:生理生化动物学》更名为《生态与进化生理学》。
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-11-01 DOI: 10.1086/728968
{"title":"Announcement: <i>Physiological and Biochemical Zoology</i> Is Changing Its Name to <i>Ecological and Evolutionary Physiology</i>.","authors":"","doi":"10.1086/728968","DOIUrl":"10.1086/728968","url":null,"abstract":"","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary on the Biphasic Ontogenetic Metabolic Scaling of the American Eel (Anguilla rostrata). 美洲鳗鲡(Anguilla rostrata)双相个体发生代谢结垢研究述评
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-11-01 Epub Date: 2023-10-13 DOI: 10.1086/727669
Douglas S Glazier, Alex E Forlenza, Heather S Galbraith, Carrie J Blakeslee
{"title":"Commentary on the Biphasic Ontogenetic Metabolic Scaling of the American Eel (<i>Anguilla rostrata</i>).","authors":"Douglas S Glazier, Alex E Forlenza, Heather S Galbraith, Carrie J Blakeslee","doi":"10.1086/727669","DOIUrl":"10.1086/727669","url":null,"abstract":"","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48073542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental stress and the morphology of Daphnia pulex 环境胁迫与水蚤形态的关系
3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-10-19 DOI: 10.1086/728316
Emma McKnight, Catriona Jones, Nolan Pearce, Paul Frost
{"title":"Environmental stress and the morphology of Daphnia pulex","authors":"Emma McKnight, Catriona Jones, Nolan Pearce, Paul Frost","doi":"10.1086/728316","DOIUrl":"https://doi.org/10.1086/728316","url":null,"abstract":"","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The rate of cooling during torpor entry drives torpor patterns in a small marsupial 冬眠进入时的冷却速度决定了小型有袋动物的冬眠模式
3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-09-27 DOI: 10.1086/727975
Chris Wacker, Fritz Geiser
{"title":"The rate of cooling during torpor entry drives torpor patterns in a small marsupial","authors":"Chris Wacker, Fritz Geiser","doi":"10.1086/727975","DOIUrl":"https://doi.org/10.1086/727975","url":null,"abstract":"Next article No AccessThe rate of cooling during torpor entry drives torpor patterns in a small marsupialChris Wacker and Fritz GeiserChris Wacker Search for more articles by this author and Fritz Geiser Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Physiological and Biochemical Zoology Just Accepted Sponsored by Division of Comparative Physiology and Biochemistry, Society for Integrative and Comparative Biology Article DOIhttps://doi.org/10.1086/727975 HistoryAccepted September 22, 2023 © 2023 The University of Chicago. All Rights reserved.PDF download Crossref reports no articles citing this article.","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135534428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Patterns of Life History Trait Covariation in an Untapped Resource, the Lab Mouse. 在一个未命名的资源,实验室老鼠中理解生活史特征的变异模式。
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-09-01 Epub Date: 2023-07-07 DOI: 10.1086/725435
Chloe C Josefson, Wendy R Hood
{"title":"Understanding Patterns of Life History Trait Covariation in an Untapped Resource, the Lab Mouse.","authors":"Chloe C Josefson,&nbsp;Wendy R Hood","doi":"10.1086/725435","DOIUrl":"10.1086/725435","url":null,"abstract":"<p><p>AbstractThrough artificial selection and inbreeding, strains of laboratory mice have been developed that vary in the expression of a single or suite of desired traits valuable to biomedical research. In addition to the selected trait(s), these strains also display variation in pelage color, body size, physiology, and life history. This article exploits the broad phenotypic variation across lab mouse strains to evaluate the relationships between life history and metabolism. Life history variation tends to exist along a fast-slow continuum. There has been considerable interest in understanding the ecological and evolutionary factors underlying life history variation and the physiological and metabolic processes that support them. Yet it remains unclear how these key traits scale across hierarchical levels, as ambiguous empirical support has been garnered at the intraspecific level. Within-species investigations have been thwarted by methodological constraints and environmental factors that obscure the genetic architecture underlying the hypothesized functional integration of life history and metabolic traits. In this analysis, we used the publicly available Mouse Phenome Database by the Jackson Laboratory to investigate the relationships among life history traits (e.g., body size, reproduction, and life span) and metabolic traits (e.g., daily energy expenditure and insulin-like growth factor 1 concentration). Our findings revealed significant variation in reproductive characteristics across strains of mice as well as relationships among life history and metabolic traits. We found evidence of variation along the fast-slow life history continuum, though the direction of some relationships among these traits deviated from interspecific predictions laid out in previous literature. Furthermore, our results suggest that the strength of these relationships are strongest earlier in life.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10253218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Thermal Acclimation Effects on Critical Thermal Maxima (CTmax) and Oxidative Stress Differences in White Epaxial Muscle between Surface and Cave Morphotypes of the Mexican Cavefish (Astyanax mexicanus). 慢性热适应对墨西哥岩洞鱼(Astyanax mexicanus)体表和洞穴形态之间白色附轴肌临界热最大值(CTmax)和氧化应激差异的影响。
IF 1.6 3区 生物学
Physiological and Biochemical Zoology Pub Date : 2023-09-01 Epub Date: 2023-08-16 DOI: 10.1086/726338
Ana Gabriela Jiménez, Evan Nash-Braun, Jason R Meyers
{"title":"Chronic Thermal Acclimation Effects on Critical Thermal Maxima (CT<sub>max</sub>) and Oxidative Stress Differences in White Epaxial Muscle between Surface and Cave Morphotypes of the Mexican Cavefish (<i>Astyanax mexicanus</i>).","authors":"Ana Gabriela Jiménez,&nbsp;Evan Nash-Braun,&nbsp;Jason R Meyers","doi":"10.1086/726338","DOIUrl":"10.1086/726338","url":null,"abstract":"<p><p>AbstractIn the face of increasing environmental temperatures, operative differences between mitochondrial function and whole-animal phenotypic response to the environment are underrepresented in research, especially in subtemperate ectothermic vertebrates. A novel approach to exploring this connection is to examine model species that are genetically similar but that have different whole-animal phenotypes, each of which inhabits different environments. The blind Mexican cavefish (<i>Astyanax mexicanus</i>) has the following two morphotypes: a surface form found in aboveground rivers and an obligate cave-dwelling form. Each morphotype inhabits vastly different thermal and oxygen environments. Whole-animal and mitochondrial responses to thermal acclimation and oxidative stress, with respect to increasing temperatures, have not been previously determined in either morphotype of this species. Here, we chronically acclimated both morphotypes to three temperatures (14°C, 25°C, and 31°C) to establish potential for acclimation and critical thermal maxima (CT<sub>max</sub>) for each morphotype of this species. After measuring CT<sub>max</sub> in six cohorts, we additionally measured enzymatic antioxidant capacity (catalase, superoxide dismutase, and glutathione peroxidase activities), peroxyl scavenging capacity, and lipid peroxidation damage in white epaxial muscle for each individual. We found a significant effect of acclimation temperature on CT<sub>max</sub> (<math><mrow><mi>F</mi><mo>=</mo><mn>29.57</mn></mrow></math>, <math><mrow><mi>P</mi><mo><</mo><mn>0.001</mn></mrow></math>) but no effect of morphotype on CT<sub>max</sub> (<math><mrow><mi>F</mi><mo>=</mo><mn>2.092</mn></mrow></math>, <math><mrow><mi>P</mi><mo>=</mo><mn>0.162</mn></mrow></math>). Additionally, we found that morphotype had a significant effect on glutathione peroxidase activity, with the surface morphotype having increased glutathione peroxidase activity compared with the cave morphotype (<math><mrow><mi>F</mi><mo>=</mo><mn>6.270</mn></mrow></math>, <math><mrow><mi>P</mi><mo>=</mo><mn>0.020</mn></mrow></math>). No other oxidative stress variable demonstrated significant differences. Increases in CT<sub>max</sub> with chronic thermal acclimation to higher temperatures suggests that there is some degree of phenotypic plasticity in this species that nominally occupies thermally stable environments. The decreased glutathione peroxidase activity in the cave morphotype may be related to decreased environmental oxygen concentration and decreased metabolic rate in this environmentally constrained morphotype compared to in its surface-living counterparts.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10261120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信