Protein Engineering Design & Selection最新文献

筛选
英文 中文
Evolution of β-lactamases and enzyme promiscuity. β-内酰胺酶的进化与酶的混杂性。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab013
Christopher Fröhlich, John Z Chen, Sevan Gholipour, Ayse N Erdogan, Nobuhiko Tokuriki
{"title":"Evolution of β-lactamases and enzyme promiscuity.","authors":"Christopher Fröhlich,&nbsp;John Z Chen,&nbsp;Sevan Gholipour,&nbsp;Ayse N Erdogan,&nbsp;Nobuhiko Tokuriki","doi":"10.1093/protein/gzab013","DOIUrl":"https://doi.org/10.1093/protein/gzab013","url":null,"abstract":"<p><p>β-Lactamases represent one of the most prevalent resistance mechanisms against β-lactam antibiotics. Beyond their clinical importance, they have also become key models in enzymology and evolutionary biochemistry. A global understanding of their evolution and sequence and functional diversity can therefore aid a wide set of different disciplines. Interestingly, β-lactamases have evolved multiple times from distinct evolutionary origins, with ancestries that reach back billions of years. It is therefore no surprise that these enzymes exhibit diverse structural features and enzymatic mechanisms. In this review, we provide a bird's eye view on the evolution of β-lactamases within the two enzyme superfamilies-i.e. the penicillin-binding protein-like and metallo-β-lactamase superfamily-through phylogenetics. We further discuss potential evolutionary origins of each β-lactamase class by highlighting signs of evolutionary connections in protein functions between β-lactamases and other enzymes, especially cases of enzyme promiscuity.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39071130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Substitution of distal and active site residues reduces product inhibition of E1 from Acidothermus Cellulolyticus. 远端和活性位点残基的取代降低了酸热菌降解纤维素的产物E1的抑制作用。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab031
Samantha R Summers, Sarah Alamdari, Casey J Kraft, Roman Brunecky, Jim Pfaendtner, Joel L Kaar
{"title":"Substitution of distal and active site residues reduces product inhibition of E1 from Acidothermus Cellulolyticus.","authors":"Samantha R Summers,&nbsp;Sarah Alamdari,&nbsp;Casey J Kraft,&nbsp;Roman Brunecky,&nbsp;Jim Pfaendtner,&nbsp;Joel L Kaar","doi":"10.1093/protein/gzab031","DOIUrl":"https://doi.org/10.1093/protein/gzab031","url":null,"abstract":"Cellulases are largely afflicted by inhibition from their reaction products, especially at high-substrate loading, which represents a major challenge for biomass processing. This challenge was overcome for endoglucanase 1 (E1) from Acidothermus cellulolyticus by identifying a large conformational change involving distal residues upon binding cellobiose. Having introduced alanine substitutions at each of these residues, we identified several mutations that reduced cellobiose inhibition of E1, including W212A, W213A, Q247A, W249A and F250A. One of the mutations (W212A) resulted in a 47-fold decrease in binding affinity of cellobiose as well as a 5-fold increase in the kcat. The mutation further increased E1 activity on Avicel and dilute-acid treated corn stover and enhanced its productivity at high-substrate loadings. These findings were corroborated by funnel metadynamics, which showed that the W212A substitution led to reduced affinity for cellobiose in the +1 and +2 binding sites due to rearrangement of key cellobiose-binding residues.","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39624356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development. 利用噬菌体展示文库筛选抗HER2酪氨酸激酶纳米体用于HER2阳性乳腺癌治疗开发
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab030
Thomanai Lamtha, Lueacha Tabtimmai, Kunan Bangphoomi, Duangnapa Kiriwan, Aijaz A Malik, Wanpen Chaicumpa, Paul M P van Bergen En Henegouwen, Kiattawee Choowongkomon
{"title":"Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development.","authors":"Thomanai Lamtha,&nbsp;Lueacha Tabtimmai,&nbsp;Kunan Bangphoomi,&nbsp;Duangnapa Kiriwan,&nbsp;Aijaz A Malik,&nbsp;Wanpen Chaicumpa,&nbsp;Paul M P van Bergen En Henegouwen,&nbsp;Kiattawee Choowongkomon","doi":"10.1093/protein/gzab030","DOIUrl":"https://doi.org/10.1093/protein/gzab030","url":null,"abstract":"<p><p>Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39814974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Molecular flexibility in computational protein design: an algorithmic perspective. 计算蛋白设计中的分子灵活性:一个算法的视角。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab011
Younes Bouchiba, Juan Cortés, Thomas Schiex, Sophie Barbe
{"title":"Molecular flexibility in computational protein design: an algorithmic perspective.","authors":"Younes Bouchiba,&nbsp;Juan Cortés,&nbsp;Thomas Schiex,&nbsp;Sophie Barbe","doi":"10.1093/protein/gzab011","DOIUrl":"https://doi.org/10.1093/protein/gzab011","url":null,"abstract":"<p><p>Computational protein design (CPD) is a powerful technique for engineering new proteins, with both great fundamental implications and diverse practical interests. However, the approximations usually made for computational efficiency, using a single fixed backbone and a discrete set of side chain rotamers, tend to produce rigid and hyper-stable folds that may lack functionality. These approximations contrast with the demonstrated importance of molecular flexibility and motions in a wide range of protein functions. The integration of backbone flexibility and multiple conformational states in CPD, in order to relieve the inaccuracies resulting from these simplifications and to improve design reliability, are attracting increased attention. However, the greatly increased search space that needs to be explored in these extensions defines extremely challenging computational problems. In this review, we outline the principles of CPD and discuss recent effort in algorithmic developments for incorporating molecular flexibility in the design process.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38958995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity. 产生具有高骨骼多样性的1000亿个环状肽噬菌体展示文库。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab018
Vanessa Carle, Xu-Dong Kong, Alice Comberlato, Chelsea Edwards, Cristina Díaz-Perlas, Christian Heinis
{"title":"Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity.","authors":"Vanessa Carle,&nbsp;Xu-Dong Kong,&nbsp;Alice Comberlato,&nbsp;Chelsea Edwards,&nbsp;Cristina Díaz-Perlas,&nbsp;Christian Heinis","doi":"10.1093/protein/gzab018","DOIUrl":"https://doi.org/10.1093/protein/gzab018","url":null,"abstract":"<p><p>Phage display is a powerful technique routinely used for the generation of peptide- or protein-based ligands. The success of phage display selections critically depends on the size and structural diversity of the libraries, but the generation of large libraries remains challenging. In this work, we have succeeded in developing a phage display library comprising around 100 billion different (bi)cyclic peptides and thus more structures than any previously reported cyclic peptide phage display library. Building such a high diversity was achieved by combining a recently reported library cloning technique, based on whole plasmid PCR, with a small plasmid that facilitated bacterial transformation. The library cloned is based on 273 different peptide backbones and thus has a large skeletal diversity. Panning of the peptide repertoire against the important thrombosis target coagulation factor XI enriched high-affinity peptides with long consensus sequences that can only be found if the library diversity is large.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39272020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Protease-stable DARPins as promising oral therapeutics. 蛋白酶稳定的DARPins作为有前途的口服治疗药物。
IF 3.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab028
Rudo A Simeon, Yu Zeng, Vikas Chonira, Andrea Martinez Aguirre, Mauricio Lasagna, Marko Baloh, Joseph A Sorg, Cecilia Tommos, Zhilei Chen
{"title":"Protease-stable DARPins as promising oral therapeutics.","authors":"Rudo A Simeon, Yu Zeng, Vikas Chonira, Andrea Martinez Aguirre, Mauricio Lasagna, Marko Baloh, Joseph A Sorg, Cecilia Tommos, Zhilei Chen","doi":"10.1093/protein/gzab028","DOIUrl":"10.1093/protein/gzab028","url":null,"abstract":"<p><p>Clostridioides difficile is an enteric bacterium whose exotoxins, TcdA and TcdB, inactivate small GTPases within the host cells, leading to bloody diarrhea. In prior work, our group engineered a panel of potent TcdB-neutralizing designed ankyrin repeat proteins (DARPin) as oral therapeutics against C. difficile infection. However, all these DARPins are highly susceptible to digestion by gut-resident proteases, i.e. trypsin and chymotrypsin. Close evaluation of the protein sequence revealed a large abundance of positively charged and aromatic residues in the DARPin scaffold. In this study, we significantly improved the protease stability of one of the DARPins, 1.4E, via protein engineering. Unlike 1.4E, whose anti-TcdB EC50 increased >83-fold after 1-hour incubation with trypsin (1 mg/ml) or chymotrypsin (0.5 mg/ml), the best progenies-T10-2 and T10b-exhibit similar anti-TcdB potency as their parent in PBS regardless of protease treatment. The superior protease stability of T10-2 and T10b is attributed to the removal of nearly all positively charged and aromatic residues except those directly engaged in target binding. Furthermore, T10-2 was found to retain significant toxin-neutralization ability in ex vivo cecum fluid and can be easily detected in mouse fecal samples upon oral administration. Both T10-2 and T10b enjoy a high thermo- and chemo-stability and can be expressed very efficiently in Escherichia coli (>100 mg/l in shaker flasks). We believe that, in additional to their potential as oral therapeutics against C. difficile infection, T10-2 and T10b can also serve as a new generation DARPin scaffold with superior protease stability.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"34 ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861517/pdf/gzab028.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10431620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus. 增加环的灵活性提供了中等嗜热苹果酸脱氢酶从嗜热硬脂地杆菌低温适应。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab026
Yuya Shimozawa, Tomoki Himiyama, Tsutomu Nakamura, Yoshiaki Nishiya
{"title":"Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus.","authors":"Yuya Shimozawa,&nbsp;Tomoki Himiyama,&nbsp;Tsutomu Nakamura,&nbsp;Yoshiaki Nishiya","doi":"10.1093/protein/gzab026","DOIUrl":"https://doi.org/10.1093/protein/gzab026","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39681041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accurate and efficient structure-based computational mutagenesis for modeling fluorescence levels of Aequorea victoria green fluorescent protein mutants. 准确、高效的基于结构的计算诱变法模拟维多利亚绿荧光蛋白突变体的荧光水平。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa022
Majid Masso
{"title":"Accurate and efficient structure-based computational mutagenesis for modeling fluorescence levels of Aequorea victoria green fluorescent protein mutants.","authors":"Majid Masso","doi":"10.1093/protein/gzaa022","DOIUrl":"https://doi.org/10.1093/protein/gzaa022","url":null,"abstract":"<p><p>A computational mutagenesis technique was used to characterize the structural effects associated with over 46 000 single and multiple amino acid variants of Aequorea victoria green fluorescent protein (GFP), whose functional effects (fluorescence levels) were recently measured by experimental researchers. For each GFP mutant, the approach generated a single score reflecting the overall change in sequence-structure compatibility relative to native GFP, as well as a vector of environmental perturbation (EP) scores characterizing the impact at all GFP residue positions. A significant GFP structure-function relationship (P < 0.0001) was elucidated by comparing the sequence-structure compatibility scores with the functional data. Next, the computed vectors for GFP mutants were used to train predictive models of fluorescence by implementing random forest (RF) classification and tree regression machine learning algorithms. Classification performance reached 0.93 for sensitivity, 0.91 for precision and 0.90 for balanced accuracy, and regression models led to Pearson's correlation as high as r = 0.83 between experimental and predicted GFP mutant fluorescence. An RF model trained on a subset of over 1000 experimental single residue GFP mutants with measured fluorescence was used for predicting the 3300 remaining unstudied single residue mutants, with results complementing known GFP biochemical and biophysical properties. In addition, models trained on the subset of experimental GFP mutants harboring multiple residue replacements successfully predicted fluorescence of the single residue GFP mutants. The models developed for this study were accurate and efficient, and their predictions outperformed those of several related state-of-the-art methods.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"33 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38478437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design. 通过合理设计提高烟曲霉纤维生物水解酶(Cel6A)的催化活性和稳定性。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa020
Subba Reddy Dodda, Nibedita Sarkar, Piyush Jain, Kaustav Aikat, Sudit S Mukhopadhyay
{"title":"Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design.","authors":"Subba Reddy Dodda,&nbsp;Nibedita Sarkar,&nbsp;Piyush Jain,&nbsp;Kaustav Aikat,&nbsp;Sudit S Mukhopadhyay","doi":"10.1093/protein/gzaa020","DOIUrl":"https://doi.org/10.1093/protein/gzaa020","url":null,"abstract":"<p><p>Cheap production of glucose is the current challenge for the production of cheap bioethanol. Ideal protein engineering approaches are required for improving the efficiency of the members of the cellulase, the enzyme complex involved in the saccharification process of cellulose. An attempt was made to improve the efficiency of the cellobiohydrolase (Cel6A), the important member of the cellulase isolated from Aspergillus fumigatus (AfCel6A). Structure-based variants of AfCel6A were designed. Amino acids surrounding the catalytic site and conserved residues in the cellulose-binding domain were targeted (N449V, N168G, Y50W and W24YW32Y). I mutant 3 server was used to identify the potential variants based on the free energy values (∆∆G). In silico structural analyses and molecular dynamics simulations evaluated the potentiality of the variants for increasing thermostability and catalytic activity of Cel6A. Further enzyme studies with purified protein identified the N449V is highly thermo stable (60°C) and pH tolerant (pH 5-7). Kinetic studies with Avicel determined that substrate affinity of N449V (Km =0.90 ± 0.02) is higher than the wild type (1.17 ± 0.04) and the catalytic efficiency (Kcat/Km) of N449V is ~2-fold higher than wild type. All these results suggested that our strategy for the development of recombinant enzyme is a right approach for protein engineering.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"33 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38478434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Protein Engineering, Design and Selection. 蛋白质工程,设计与选择。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2020-09-14 DOI: 10.1093/protein/gzaa024
R. Chica
{"title":"Protein Engineering, Design and Selection.","authors":"R. Chica","doi":"10.1093/protein/gzaa024","DOIUrl":"https://doi.org/10.1093/protein/gzaa024","url":null,"abstract":"","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"105 2 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77758449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信