{"title":"增加环的灵活性提供了中等嗜热苹果酸脱氢酶从嗜热硬脂地杆菌低温适应。","authors":"Yuya Shimozawa, Tomoki Himiyama, Tsutomu Nakamura, Yoshiaki Nishiya","doi":"10.1093/protein/gzab026","DOIUrl":null,"url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus.\",\"authors\":\"Yuya Shimozawa, Tomoki Himiyama, Tsutomu Nakamura, Yoshiaki Nishiya\",\"doi\":\"10.1093/protein/gzab026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzab026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus.
Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.