基于arac的生物传感器对三乙酸内酯和茴香酸的工程灵敏度和特异性。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhiqing Wang, Aarti Doshi, Ratul Chowdhury, Yixi Wang, Costas D Maranas, Patrick C Cirino
{"title":"基于arac的生物传感器对三乙酸内酯和茴香酸的工程灵敏度和特异性。","authors":"Zhiqing Wang,&nbsp;Aarti Doshi,&nbsp;Ratul Chowdhury,&nbsp;Yixi Wang,&nbsp;Costas D Maranas,&nbsp;Patrick C Cirino","doi":"10.1093/protein/gzaa027","DOIUrl":null,"url":null,"abstract":"<p><p>We previously described the design of triacetic acid lactone (TAL) biosensor 'AraC-TAL1', based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a 'decoy' ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzaa027","citationCount":"3","resultStr":"{\"title\":\"Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid.\",\"authors\":\"Zhiqing Wang,&nbsp;Aarti Doshi,&nbsp;Ratul Chowdhury,&nbsp;Yixi Wang,&nbsp;Costas D Maranas,&nbsp;Patrick C Cirino\",\"doi\":\"10.1093/protein/gzaa027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We previously described the design of triacetic acid lactone (TAL) biosensor 'AraC-TAL1', based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a 'decoy' ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzaa027\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzaa027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzaa027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

我们之前描述了基于AraC调节蛋白的三乙酸内酯(TAL)生物传感器“AraC- tal1”的设计。虽然作为筛选增强TAL生物合成的工具有用,但该变体显示背景(泄漏)表达升高,敏感性差和诱导剂特异性降低,包括对orsellinic酸(OA)的反应性。对TAL或OA更敏感的生物传感器可以帮助研究和设计产生这些和类似化合物的聚酮合成酶。在这项工作中,我们采用基于teta的双重选择来分离新的TAL反应性AraC变体,这些变体显示背景表达减少和TAL敏感性提高。为了提高TAL特异性,在阴性选择期间将OA作为“诱饵”配体,从而分离出被OA抑制的TAL生物传感器。最后,为了设计OA特异性的AraC变异,采用了迭代蛋白质重新设计和优化计算框架,随后进行了2轮定向进化,得到了相对于AraC- tal1, OA/TAL特异性提高24倍的生物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid.

We previously described the design of triacetic acid lactone (TAL) biosensor 'AraC-TAL1', based on the AraC regulatory protein. Although useful as a tool to screen for enhanced TAL biosynthesis, this variant shows elevated background (leaky) expression, poor sensitivity and relaxed inducer specificity, including responsiveness to orsellinic acid (OA). More sensitive biosensors specific to either TAL or OA can aid in the study and engineering of polyketide synthases that produce these and similar compounds. In this work, we employed a TetA-based dual-selection to isolate new TAL-responsive AraC variants showing reduced background expression and improved TAL sensitivity. To improve TAL specificity, OA was included as a 'decoy' ligand during negative selection, resulting in the isolation of a TAL biosensor that is inhibited by OA. Finally, to engineer OA-specific AraC variants, the iterative protein redesign and optimization computational framework was employed, followed by 2 rounds of directed evolution, resulting in a biosensor with 24-fold improved OA/TAL specificity, relative to AraC-TAL1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信