Protein Engineering Design & Selection最新文献

筛选
英文 中文
Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species. 基于酵母表面展示的 ACE2 突变鉴定可调节多种哺乳动物的 SARS-CoV-2 穗状结合。
IF 2.6 4区 生物学
Protein Engineering Design & Selection Pub Date : 2022-02-17 DOI: 10.1093/protein/gzab035
Pete Heinzelman, Jonathan C Greenhalgh, Philip A Romero
{"title":"Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species.","authors":"Pete Heinzelman, Jonathan C Greenhalgh, Philip A Romero","doi":"10.1093/protein/gzab035","DOIUrl":"10.1093/protein/gzab035","url":null,"abstract":"<p><p>Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with different mammalian angiotensin-converting enzyme II (ACE2) cell entry receptors elucidates determinants of virus transmission and facilitates development of vaccines for humans and animals. Yeast display-based directed evolution identified conserved ACE2 mutations that increase spike binding across multiple species. Gln42Leu increased ACE2-spike binding for human and four of four other mammalian ACE2s; Leu79Ile had an effect for human and three of three mammalian ACE2s. These residues are highly represented, 83% for Gln42 and 56% for Leu79, among mammalian ACE2s. The above findings can be important in protecting humans and animals from existing and future SARS-CoV-2 variants.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005050/pdf/gzab035.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10276456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-guided protein engineering of human cathepsin L for efficient collagenolytic activity. 结构导向的人组织蛋白酶L高效胶原溶解活性蛋白工程。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab005
Debi Choudhury, Sampa Biswas
{"title":"Structure-guided protein engineering of human cathepsin L for efficient collagenolytic activity.","authors":"Debi Choudhury,&nbsp;Sampa Biswas","doi":"10.1093/protein/gzab005","DOIUrl":"https://doi.org/10.1093/protein/gzab005","url":null,"abstract":"<p><p>Engineering precise substrate specificity of proteases advances the potential to use them in biotechnological and therapeutic applications. Collagen degradation, a physiological process mediated by collagenases, is an integral part of extracellular matrix remodeling and when uncontrolled, implicated in different pathological conditions. Lysosomal cathepsin-K cleaves triple helical collagen fiber, whereas cathepsin-L cannot do so. In this study, we have imparted collagenolytic property to cathepsin-L, by systematically engineering proline-specificity and glycosaminoglycans (GAG)-binding surface in the protease. The proline-specific mutant shows high specificity for prolyl-peptidic substrate but is incapable of cleaving collagen. Engineering a GAG-binding surface on the proline-specific mutant enabled it to degrade type-I collagen in the presence of chondroitin-4-sulfate (C4-S). We also present the crystal structures of proline-specific (1.4 Å) and collagen-specific (1.8 Å) mutants. Finally docking studies with prolyl-peptidic substrate (Ala-Gly-Pro-Arg-Ala) at the active site and a C4-S molecule at the GAG-binding site enable us to identify key structural features responsible for collagenolytic activity of cysteine cathepsins.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25566737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability. 人类DNA连接酶IV的半胚突变导致DNA结合效率、疏水性和热稳定性受损。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab001
Eswar Reddy Maddi, Sathees C Raghavan, Ramanathan Natesh
{"title":"Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability.","authors":"Eswar Reddy Maddi,&nbsp;Sathees C Raghavan,&nbsp;Ramanathan Natesh","doi":"10.1093/protein/gzab001","DOIUrl":"https://doi.org/10.1093/protein/gzab001","url":null,"abstract":"<p><p>Studies have shown that Lig4 syndrome mutations in DNA ligase IV (LigIV) are compromised in its function with residual level of double strand break ligation activity in vivo. It was speculated that Lig4 syndrome mutations adversely affect protein folding and stability. Though there are crystal structures of LigIV, there are no reports of crystal structures of Lig4 syndrome mutants and their biophysical characterization to date. Here, we have examined the conformational states, thermal stability, hydrophobicity and DNA binding efficiency of human DNA LigIV wild type and its hypomorphic mutants by far-UV circular dichroism, tyrosine and tryptophan fluorescence, and 1-anilino-8-naphthalene-sulfonate binding, dynamic light scattering, size exclusion chromatography, multi-angle light scattering and electrophoretic mobility shift assay. We show here that LigIV hypomorphic mutants have reduced DNA-binding efficiency, a shift in secondary structure content from the helical to random coil, marginal reduction in their thermal stability and increased hydrophobicity as compared to the wild-type LigIV.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25373436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis. 人造金属蛋白的设计与工程:从从头金属配位到催化。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab003
Andreas S Klein, Cathleen Zeymer
{"title":"Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.","authors":"Andreas S Klein,&nbsp;Cathleen Zeymer","doi":"10.1093/protein/gzab003","DOIUrl":"https://doi.org/10.1093/protein/gzab003","url":null,"abstract":"<p><p>Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25407260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Improved thermostability of proteinase K and recognizing the synergistic effect of Rosetta and FoldX approaches. 改善蛋白酶K的热稳定性,并认识到Rosetta和FoldX方法的协同效应。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab024
Yang Zhao, Daixi Li, Xue Bai, Manjie Luo, Yan Feng, Yilei Zhao, Fuqiang Ma, Guang-Yu Yang
{"title":"Improved thermostability of proteinase K and recognizing the synergistic effect of Rosetta and FoldX approaches.","authors":"Yang Zhao,&nbsp;Daixi Li,&nbsp;Xue Bai,&nbsp;Manjie Luo,&nbsp;Yan Feng,&nbsp;Yilei Zhao,&nbsp;Fuqiang Ma,&nbsp;Guang-Yu Yang","doi":"10.1093/protein/gzab024","DOIUrl":"https://doi.org/10.1093/protein/gzab024","url":null,"abstract":"<p><p>Proteinase K (PRK) is a proteolytic enzyme that has been widely used in industrial applications. However, poor stability has severely limited the uses of PRK. In this work, we used two structure-guided rational design methods, Rosetta and FoldX, to modify PRK thermostability. Fifty-two single amino acid conversion mutants were constructed based on software predictions of residues that could affect protein stability. Experimental characterization revealed that 46% (21 mutants) exhibited enhanced thermostability. The top four variants, D260V, T4Y, S216Q, and S219Q, showed improved half-lives at 69°C by 12.4-, 2.6-, 2.3-, and 2.2-fold that of the parent enzyme, respectively. We also found that selecting mutations predicted by both methods could increase the predictive accuracy over that of either method alone, with 73% of the shared predicted mutations resulting in higher thermostability. In addition to providing promising new variants of PRK in industrial applications, our findings also show that combining these programs may synergistically improve their predictive accuracy.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39535240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Breakthroughs in computational design methods open up new frontiers for de novo protein engineering. 计算设计方法的突破为从头开始的蛋白质工程开辟了新的领域。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab007
Ben A Meinen, Christopher D Bahl
{"title":"Breakthroughs in computational design methods open up new frontiers for de novo protein engineering.","authors":"Ben A Meinen,&nbsp;Christopher D Bahl","doi":"10.1093/protein/gzab007","DOIUrl":"https://doi.org/10.1093/protein/gzab007","url":null,"abstract":"<p><p>Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38896767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Linking thermodynamics and measurements of protein stability. 把热力学和蛋白质稳定性的测量联系起来。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab002
Kresten Lindorff-Larsen, Kaare Teilum
{"title":"Linking thermodynamics and measurements of protein stability.","authors":"Kresten Lindorff-Larsen,&nbsp;Kaare Teilum","doi":"10.1093/protein/gzab002","DOIUrl":"https://doi.org/10.1093/protein/gzab002","url":null,"abstract":"<p><p>We review the background, theory and general equations for the analysis of equilibrium protein unfolding experiments, focusing on denaturant and heat-induced unfolding. The primary focus is on the thermodynamics of reversible folding/unfolding transitions and the experimental methods that are available for extracting thermodynamic parameters. We highlight the importance of modelling both how the folding equilibrium depends on a perturbing variable such as temperature or denaturant concentration, and the importance of modelling the baselines in the experimental observables.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25482572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Engineering stable carbonic anhydrases for CO2 capture: a critical review. 工程稳定的碳酸酐酶用于二氧化碳捕获:一个重要的回顾。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab021
Mirfath Sultana Mesbahuddin, Aravindhan Ganesan, Subha Kalyaanamoorthy
{"title":"Engineering stable carbonic anhydrases for CO2 capture: a critical review.","authors":"Mirfath Sultana Mesbahuddin,&nbsp;Aravindhan Ganesan,&nbsp;Subha Kalyaanamoorthy","doi":"10.1093/protein/gzab021","DOIUrl":"https://doi.org/10.1093/protein/gzab021","url":null,"abstract":"<p><p>Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39338822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A versatile assay platform for enzymatic poly(ethylene-terephthalate) degradation. 一个通用的酶促聚对苯二甲酸乙酯降解测定平台。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab022
Sebastian Weigert, Andreas Gagsteiger, Teresa Menzel, Birte Höcker
{"title":"A versatile assay platform for enzymatic poly(ethylene-terephthalate) degradation.","authors":"Sebastian Weigert,&nbsp;Andreas Gagsteiger,&nbsp;Teresa Menzel,&nbsp;Birte Höcker","doi":"10.1093/protein/gzab022","DOIUrl":"https://doi.org/10.1093/protein/gzab022","url":null,"abstract":"<p><p>Accumulation of plastic and subsequent microplastic is a major environmental challenge. With the discovery of potent polyethylene terephthalate (PET)-degrading enzymes, a new perspective arose for environmental decomposition as well as technical recycling. To explore the enormous diversity of potential PET-degrading enzymes in nature and also to conveniently employ techniques like protein engineering and directed evolution, a fast and reliable assay platform is needed. In this study we present our versatile solution applying a PET coating on standard lab consumables such as polymerase chain reaction tubes, 96- and 384-well microtiter plates, yielding an adjustable crystallinity of the PET. Combining the reaction vessels with either ultra-high performance liquid chromatography (UHPLC) or fluorometric readout and additional enzyme quantification offers a range of advantages. Thereby, the platform can easily be adapted to diverse needs from detailed analysis with high precision to high-throughput (HT) applications including crude lysate analysis.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39338823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Rational engineering of an erythropoietin fusion protein to treat hypoxia. 合理设计促红细胞生成素融合蛋白治疗缺氧。
IF 2.4 4区 生物学
Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI: 10.1093/protein/gzab025
Jungmin Lee, Andyna Vernet, Nathalie G Gruber, Kasia M Kready, Devin R Burrill, Jeffrey C Way, Pamela A Silver
{"title":"Rational engineering of an erythropoietin fusion protein to treat hypoxia.","authors":"Jungmin Lee,&nbsp;Andyna Vernet,&nbsp;Nathalie G Gruber,&nbsp;Kasia M Kready,&nbsp;Devin R Burrill,&nbsp;Jeffrey C Way,&nbsp;Pamela A Silver","doi":"10.1093/protein/gzab025","DOIUrl":"https://doi.org/10.1093/protein/gzab025","url":null,"abstract":"<p><p>Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10-14 M, allowing an estimate of the number of receptor-ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39835737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信