{"title":"计算设计方法的突破为从头开始的蛋白质工程开辟了新的领域。","authors":"Ben A Meinen, Christopher D Bahl","doi":"10.1093/protein/gzab007","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzab007","citationCount":"9","resultStr":"{\"title\":\"Breakthroughs in computational design methods open up new frontiers for de novo protein engineering.\",\"authors\":\"Ben A Meinen, Christopher D Bahl\",\"doi\":\"10.1093/protein/gzab007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzab007\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzab007\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Breakthroughs in computational design methods open up new frontiers for de novo protein engineering.
Proteins catalyze the majority of chemical reactions in organisms, and harnessing this power has long been the focus of the protein engineering field. Computational protein design aims to create new proteins and functions in silico, and in doing so, accelerate the process, reduce costs and enable more sophisticated engineering goals to be accomplished. Challenges that very recently seemed impossible are now within reach thanks to several landmark advances in computational protein design methods. Here, we summarize these new methods, with a particular emphasis on de novo protein design advancements occurring within the past 5 years.
期刊介绍:
Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.