Publications of the Research Institute for Mathematical Sciences最新文献

筛选
英文 中文
Fujita-Type Blow-Up for Discrete Reaction–Diffusion Equations on Networks 网络上离散反应-扩散方程的Fujita型Blow-Up
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-03-18 DOI: 10.4171/PRIMS/55-2-1
Soon‐Yeong Chung, Min-Jun Choi, Jea-Hyun Park
{"title":"Fujita-Type Blow-Up for Discrete Reaction–Diffusion Equations on Networks","authors":"Soon‐Yeong Chung, Min-Jun Choi, Jea-Hyun Park","doi":"10.4171/PRIMS/55-2-1","DOIUrl":"https://doi.org/10.4171/PRIMS/55-2-1","url":null,"abstract":"","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-2-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46970391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Weak Triebel–Lizorkin Spaces with Variable Integrability, Summability and Smoothness 具有可变可积性、可和性和光滑性的弱triiebel - lizorkin空间
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-03-18 DOI: 10.4171/PRIMS/55-2-2
Wenchang Li, Jingshi Xu
{"title":"Weak Triebel–Lizorkin Spaces with Variable Integrability, Summability and Smoothness","authors":"Wenchang Li, Jingshi Xu","doi":"10.4171/PRIMS/55-2-2","DOIUrl":"https://doi.org/10.4171/PRIMS/55-2-2","url":null,"abstract":"","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-2-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49046877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quotient Families of Elliptic Curves Associated with Representations of Dihedral Groups 与二面体群表示相关的椭圆曲线商族
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-03-18 DOI: 10.4171/PRIMS/55-2-4
Ryota Hirakawa, Shigeru Takamura
{"title":"Quotient Families of Elliptic Curves Associated with Representations of Dihedral Groups","authors":"Ryota Hirakawa, Shigeru Takamura","doi":"10.4171/PRIMS/55-2-4","DOIUrl":"https://doi.org/10.4171/PRIMS/55-2-4","url":null,"abstract":"","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-2-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43608932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of Kirillov–Reshetikhin Crystals for Multiplicity-Free Nodes 无多重节点的Kirillov-Reshetikhin晶体的存在性
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-02-02 DOI: 10.4171/PRIMS/56-4-4
Rekha Biswal, Travis Scrimshaw
{"title":"Existence of Kirillov–Reshetikhin Crystals for Multiplicity-Free Nodes","authors":"Rekha Biswal, Travis Scrimshaw","doi":"10.4171/PRIMS/56-4-4","DOIUrl":"https://doi.org/10.4171/PRIMS/56-4-4","url":null,"abstract":"We show that the Kirillov--Reshetikhin crystal $B^{r,s}$ exists when $r$ is a node such that the Kirillov--Reshetikhin module $W^{r,s}$ has a multiplicity free classical decomposition.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45908847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Polynomial Tau-Functions for the Multicomponent KP Hierarchy 多元KP族的多项式Tau函数
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-01-23 DOI: 10.4171/prims/58-1-1
V. Kac, J. Leur
{"title":"Polynomial Tau-Functions for the Multicomponent KP Hierarchy","authors":"V. Kac, J. Leur","doi":"10.4171/prims/58-1-1","DOIUrl":"https://doi.org/10.4171/prims/58-1-1","url":null,"abstract":"In a previous paper we constructed all polynomial tau-functions of the 1-component KP hierarchy, namely, we showed that any such tau-function is obtained from a Schur polynomial $s_lambda(t)$ by certain shifts of arguments. In the present paper we give a simpler proof of this result, using the (1-component) boson-fermion correspondence. Moreover, we show that this approach can be applied to the s-component KP hierarchy, using the s-component boson-fermion correspondence, finding thereby all its polynomial tau-functions. We also find all polynomial tau-functions for the reduction of the s-component KP hierarchy, associated to any partition consisting of s positive parts.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41508336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
An Explicit Bound for the Log-Canonical Degree of Curves on Open Surfaces 开曲面上曲线对数正则度的一个显式界
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-01-08 DOI: 10.4171/prims/58-4-6
Pietro Sabatino
{"title":"An Explicit Bound for the Log-Canonical Degree of Curves on Open Surfaces","authors":"Pietro Sabatino","doi":"10.4171/prims/58-4-6","DOIUrl":"https://doi.org/10.4171/prims/58-4-6","url":null,"abstract":"Let $X$, $D$ be a smooth projective surface and a simple normal crossing divisor on $X$, respectively. Suppose $kappa (X, K_X + D)ge 0$, let $C$ be an irreducible curve on $X$ whose support is not contained in $D$ and $alpha$ a rational number in $ [ 0, 1 ]$. Following Miyaoka, we define an orbibundle $mathcal{E}_alpha$ as a suitable free subsheaf of log differentials on a Galois cover of $X$. Making use of $mathcal{E}_alpha$ we prove a Bogomolov-Miyaoka-Yau inequality for the couple $(X, D+alpha C)$. Suppose moreover that $K_X+D$ is big and nef and $(K_X+D)^2 $ is greater than $e_{Xsetminus D}$, namely the topological Euler number of the open surface $Xsetminus D$. As a consequence of the inequality, by varying $alpha$, we deduce a bound for $(K_X+D)cdot C)$ by an explicit function of the invariants: $(K_X+D)^2$, $e_{Xsetminus D}$ and $e_{C setminus D} $, namely the topological Euler number of the normalization of $C$ minus the points in the set theoretic counterimage of $D$. We finally deduce that on such surfaces curves with $- e_{Csetminus D}$ bounded form a bounded family, in particular there are only a finite number of curves $C$ on $X$ such that $- e_{Csetminus D}le 0$.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46732011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Stokes Geometry of a Unified Family of $P_mathrm J$-Hierarchies (J=I, II, IV, 34) 关于$P_mathrm J$-层次(J=I,II,IV,34)的统一族的Stokes几何
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2019-01-04 DOI: 10.4171/PRIMS/55-1-3
Yoko Umeta
{"title":"On the Stokes Geometry of a Unified Family of $P_mathrm J$-Hierarchies (J=I, II, IV, 34)","authors":"Yoko Umeta","doi":"10.4171/PRIMS/55-1-3","DOIUrl":"https://doi.org/10.4171/PRIMS/55-1-3","url":null,"abstract":"","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-1-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48800741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Conjectural Extension of the Kazhdan–Lusztig Equivalence Kazhdan–Lusztig等价的一个猜想推广
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2018-10-22 DOI: 10.4171/prims/57-3-14
D. Gaitsgory
{"title":"A Conjectural Extension of the Kazhdan–Lusztig Equivalence","authors":"D. Gaitsgory","doi":"10.4171/prims/57-3-14","DOIUrl":"https://doi.org/10.4171/prims/57-3-14","url":null,"abstract":"A theorem of Kazhdan and Lusztig establishes an equivalence between the category of G(CO)-integrable representations of the Kac-Moody algebra hat{g}_{-kappa} at a negative level -kappa and the category Rep_q(G) of (algebraic) representations of the \"big\" (a.k.a. Lusztig's) quantum group. In this paper we propose a conjecture that describes the category of Iwahori-integrable Kac-Moody modules. The corresponding object on the quantum group side, denoted Rep^{mxd}_q(G), involves Lusztig's version of the quantum group for the Borel and the De Concini-Kac version for the negative Borel.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41770265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Pro-$p$ Grothendieck Conjecture for Hyperbolic Polycurves 双曲折线的Pro-$p$Grothendieck猜想
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2018-10-18 DOI: 10.4171/PRIMS/54-4-3
K. Sawada
{"title":"Pro-$p$ Grothendieck Conjecture for Hyperbolic Polycurves","authors":"K. Sawada","doi":"10.4171/PRIMS/54-4-3","DOIUrl":"https://doi.org/10.4171/PRIMS/54-4-3","url":null,"abstract":"","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/54-4-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42970272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
On Parabolic Restriction of Perverse Sheaves 关于逆轴的抛物约束
IF 1.2 2区 数学
Publications of the Research Institute for Mathematical Sciences Pub Date : 2018-10-08 DOI: 10.4171/prims/57-3-12
R. Bezrukavnikov, Alexander Yom Din
{"title":"On Parabolic Restriction of Perverse Sheaves","authors":"R. Bezrukavnikov, Alexander Yom Din","doi":"10.4171/prims/57-3-12","DOIUrl":"https://doi.org/10.4171/prims/57-3-12","url":null,"abstract":"We prove exactness of parabolic restriction and induction functors for conjugation equivariant sheaves on a reductive group generalizing a well known result of Lusztig who established this property for character sheaves. We propose a conjectural (but known for character sheaves) t-exactness property of the Harish-Chandra transform and provide an evidence for that conjecture. We also present two applications generalizing some results of Gabber and Loeser on perverse sheaves on an algebraic torus to an arbitrary reductive group.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44906550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信