{"title":"无多重节点的Kirillov-Reshetikhin晶体的存在性","authors":"Rekha Biswal, Travis Scrimshaw","doi":"10.4171/PRIMS/56-4-4","DOIUrl":null,"url":null,"abstract":"We show that the Kirillov--Reshetikhin crystal $B^{r,s}$ exists when $r$ is a node such that the Kirillov--Reshetikhin module $W^{r,s}$ has a multiplicity free classical decomposition.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Existence of Kirillov–Reshetikhin Crystals for Multiplicity-Free Nodes\",\"authors\":\"Rekha Biswal, Travis Scrimshaw\",\"doi\":\"10.4171/PRIMS/56-4-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Kirillov--Reshetikhin crystal $B^{r,s}$ exists when $r$ is a node such that the Kirillov--Reshetikhin module $W^{r,s}$ has a multiplicity free classical decomposition.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/56-4-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/56-4-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of Kirillov–Reshetikhin Crystals for Multiplicity-Free Nodes
We show that the Kirillov--Reshetikhin crystal $B^{r,s}$ exists when $r$ is a node such that the Kirillov--Reshetikhin module $W^{r,s}$ has a multiplicity free classical decomposition.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.