开曲面上曲线对数正则度的一个显式界

IF 1.1 2区 数学 Q1 MATHEMATICS
Pietro Sabatino
{"title":"开曲面上曲线对数正则度的一个显式界","authors":"Pietro Sabatino","doi":"10.4171/prims/58-4-6","DOIUrl":null,"url":null,"abstract":"Let $X$, $D$ be a smooth projective surface and a simple normal crossing divisor on $X$, respectively. Suppose $\\kappa (X, K_X + D)\\ge 0$, let $C$ be an irreducible curve on $X$ whose support is not contained in $D$ and $\\alpha$ a rational number in $ [ 0, 1 ]$. Following Miyaoka, we define an orbibundle $\\mathcal{E}_\\alpha$ as a suitable free subsheaf of log differentials on a Galois cover of $X$. Making use of $\\mathcal{E}_\\alpha$ we prove a Bogomolov-Miyaoka-Yau inequality for the couple $(X, D+\\alpha C)$. Suppose moreover that $K_X+D$ is big and nef and $(K_X+D)^2 $ is greater than $e_{X\\setminus D}$, namely the topological Euler number of the open surface $X\\setminus D$. As a consequence of the inequality, by varying $\\alpha$, we deduce a bound for $(K_X+D)\\cdot C)$ by an explicit function of the invariants: $(K_X+D)^2$, $e_{X\\setminus D}$ and $e_{C \\setminus D} $, namely the topological Euler number of the normalization of $C$ minus the points in the set theoretic counterimage of $D$. We finally deduce that on such surfaces curves with $- e_{C\\setminus D}$ bounded form a bounded family, in particular there are only a finite number of curves $C$ on $X$ such that $- e_{C\\setminus D}\\le 0$.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Explicit Bound for the Log-Canonical Degree of Curves on Open Surfaces\",\"authors\":\"Pietro Sabatino\",\"doi\":\"10.4171/prims/58-4-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$, $D$ be a smooth projective surface and a simple normal crossing divisor on $X$, respectively. Suppose $\\\\kappa (X, K_X + D)\\\\ge 0$, let $C$ be an irreducible curve on $X$ whose support is not contained in $D$ and $\\\\alpha$ a rational number in $ [ 0, 1 ]$. Following Miyaoka, we define an orbibundle $\\\\mathcal{E}_\\\\alpha$ as a suitable free subsheaf of log differentials on a Galois cover of $X$. Making use of $\\\\mathcal{E}_\\\\alpha$ we prove a Bogomolov-Miyaoka-Yau inequality for the couple $(X, D+\\\\alpha C)$. Suppose moreover that $K_X+D$ is big and nef and $(K_X+D)^2 $ is greater than $e_{X\\\\setminus D}$, namely the topological Euler number of the open surface $X\\\\setminus D$. As a consequence of the inequality, by varying $\\\\alpha$, we deduce a bound for $(K_X+D)\\\\cdot C)$ by an explicit function of the invariants: $(K_X+D)^2$, $e_{X\\\\setminus D}$ and $e_{C \\\\setminus D} $, namely the topological Euler number of the normalization of $C$ minus the points in the set theoretic counterimage of $D$. We finally deduce that on such surfaces curves with $- e_{C\\\\setminus D}$ bounded form a bounded family, in particular there are only a finite number of curves $C$ on $X$ such that $- e_{C\\\\setminus D}\\\\le 0$.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/58-4-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/58-4-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$X$, $D$分别为$X$上的光滑投影面和简单法向交叉除数。假设$\kappa (X, K_X + D)\ge 0$,假设$C$是$X$上的不可约曲线,其支持不包含在$D$中,$\alpha$是$ [ 0, 1 ]$中的有理数。继Miyaoka之后,我们将轨道束$\mathcal{E}_\alpha$定义为$X$的伽罗瓦覆盖上的对数微分的合适自由子层。利用$\mathcal{E}_\alpha$证明了一对夫妇的Bogomolov-Miyaoka-Yau不等式$(X, D+\alpha C)$。再设$K_X+D$较大,且nef和$(K_X+D)^2 $大于$e_{X\setminus D}$,即开表面的拓扑欧拉数$X\setminus D$。作为不等式的结果,通过改变$\alpha$,我们通过不变量:$(K_X+D)^2$, $e_{X\setminus D}$和$e_{C \setminus D} $的显式函数推导出$(K_X+D)\cdot C)$的界,即$C$的归一化的拓扑欧拉数减去$D$的集合论反像中的点。最后推导出,在这样的曲面上,具有$- e_{C\setminus D}$有界的曲线形成了一个有界族,特别是在$X$上,只有有限数量的曲线$C$使得$- e_{C\setminus D}\le 0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Explicit Bound for the Log-Canonical Degree of Curves on Open Surfaces
Let $X$, $D$ be a smooth projective surface and a simple normal crossing divisor on $X$, respectively. Suppose $\kappa (X, K_X + D)\ge 0$, let $C$ be an irreducible curve on $X$ whose support is not contained in $D$ and $\alpha$ a rational number in $ [ 0, 1 ]$. Following Miyaoka, we define an orbibundle $\mathcal{E}_\alpha$ as a suitable free subsheaf of log differentials on a Galois cover of $X$. Making use of $\mathcal{E}_\alpha$ we prove a Bogomolov-Miyaoka-Yau inequality for the couple $(X, D+\alpha C)$. Suppose moreover that $K_X+D$ is big and nef and $(K_X+D)^2 $ is greater than $e_{X\setminus D}$, namely the topological Euler number of the open surface $X\setminus D$. As a consequence of the inequality, by varying $\alpha$, we deduce a bound for $(K_X+D)\cdot C)$ by an explicit function of the invariants: $(K_X+D)^2$, $e_{X\setminus D}$ and $e_{C \setminus D} $, namely the topological Euler number of the normalization of $C$ minus the points in the set theoretic counterimage of $D$. We finally deduce that on such surfaces curves with $- e_{C\setminus D}$ bounded form a bounded family, in particular there are only a finite number of curves $C$ on $X$ such that $- e_{C\setminus D}\le 0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信