Ramanujan Journal最新文献

筛选
英文 中文
Log-convexity and the overpartition function. 对数凸性和过配分函数。
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2023-01-01 DOI: 10.1007/s11139-022-00578-0
Gargi Mukherjee
{"title":"Log-convexity and the overpartition function.","authors":"Gargi Mukherjee","doi":"10.1007/s11139-022-00578-0","DOIUrl":"https://doi.org/10.1007/s11139-022-00578-0","url":null,"abstract":"<p><p>Let <math> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> denote the overpartition function. In this paper, we obtain an inequality for the sequence <math> <mrow><msup><mi>Δ</mi> <mn>2</mn></msup> <mo>log</mo> <mspace></mspace> <mroot> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mo>/</mo> <msup><mrow><mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mi>α</mi></msup> </mrow> <mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </mroot> </mrow> </math> which states that <dispformula> <math> <mrow> <mtable><mtr><mtd></mtd> <mtd><mrow><mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mfrac><mrow><mn>3</mn> <mi>π</mi></mrow> <mrow><mn>4</mn> <msup><mi>n</mi> <mrow><mn>5</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac><mrow><mn>11</mn> <mo>+</mo> <mn>5</mn> <mi>α</mi></mrow> <msup><mi>n</mi> <mrow><mn>11</mn> <mo>/</mo> <mn>4</mn></mrow> </msup> </mfrac> <mrow><mo>)</mo></mrow> <mo><</mo> <msup><mi>Δ</mi> <mn>2</mn></msup> <mo>log</mo> <mspace></mspace> <mroot> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mo>/</mo> <msup><mrow><mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mi>α</mi></msup> </mrow> <mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> </mroot> </mrow> </mtd> </mtr> <mtr><mtd><mrow></mrow></mtd> <mtd><mrow><mo><</mo> <mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mfrac><mrow><mn>3</mn> <mi>π</mi></mrow> <mrow><mn>4</mn> <msup><mi>n</mi> <mrow><mn>5</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mrow> </mfrac> <mrow><mo>)</mo></mrow> <mspace></mspace> <mspace></mspace> <mtext>for</mtext> <mspace></mspace> <mi>n</mi> <mo>≥</mo> <mi>N</mi> <mrow><mo>(</mo> <mi>α</mi> <mo>)</mo></mrow> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mi>α</mi></math> is a non-negative real number, <math><mrow><mi>N</mi> <mo>(</mo> <mi>α</mi> <mo>)</mo></mrow> </math> is a positive integer depending on <math><mi>α</mi></math> , and <math><mi>Δ</mi></math> is the difference operator with respect to <i>n</i>. This inequality consequently implies <math><mo>log</mo></math> -convexity of <math> <mrow><mrow><mo>{</mo></mrow> <mroot> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mo>/</mo> <mi>n</mi></mrow> <mi>n</mi></mroot> <msub><mrow><mo>}</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>19</mn></mrow> </msub> </mrow> </math> and <math> <mrow><mrow><mo>{</mo></mrow> <mroot> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> <mi>n</mi></mroot> <msub><mrow><mo>}</mo></mrow> <mrow><mi>n</mi> <mo>≥</mo> <mn>4</mn></mrow> </msub> </mrow> </math> . Moreover, it also establishes the asymptotic growth of <math> <mrow><msup><mi>Δ</mi> <mn>2</mn></msup> <mo>log</mo> <mspace></mspace> <mroot> <mro","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10601993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A single-variable proof of the omega SPT congruence family over powers of 5. ωSPT同余族在5次幂上的单变量证明。
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2023-01-01 Epub Date: 2023-06-28 DOI: 10.1007/s11139-023-00747-9
Nicolas Allen Smoot
{"title":"A single-variable proof of the omega SPT congruence family over powers of 5.","authors":"Nicolas Allen Smoot","doi":"10.1007/s11139-023-00747-9","DOIUrl":"10.1007/s11139-023-00747-9","url":null,"abstract":"<p><p>In 2018, Liuquan Wang and Yifan Yang proved the existence of an infinite family of congruences for the smallest parts function corresponding to the third-order mock theta function <math><mrow><mi>ω</mi><mo>(</mo><mi>q</mi><mo>)</mo></mrow></math>. Their proof took the form of an induction requiring 20 initial relations, and utilized a space of modular functions isomorphic to a free rank 2 <math><mrow><mi>Z</mi><mo>[</mo><mi>X</mi><mo>]</mo></mrow></math>-module. This proof strategy was originally developed by Paule and Radu to study families of congruences associated with modular curves of genus 1. We show that Wang and Yang's family of congruences, which is associated with a genus 0 modular curve, can be proved using a single-variable approach, via a ring of modular functions isomorphic to a localization of <math><mrow><mi>Z</mi><mo>[</mo><mi>X</mi><mo>]</mo></mrow></math>. To our knowledge, this is the first time that such an algebraic structure has been applied to the theory of partition congruences. Our induction is more complicated, and relies on sequences of functions which exhibit a somewhat irregular 5-adic convergence. However, the proof ultimately rests upon the direct verification of only 10 initial relations, and is similar to the classical methods of Ramanujan and Watson.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the infinite Borwein product raised to a positive real power. 关于无穷大的Borwein乘积被提升为一个正的实权。
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2023-01-01 Epub Date: 2021-11-02 DOI: 10.1007/s11139-021-00519-3
Michael J Schlosser, Nian Hong Zhou
{"title":"On the infinite Borwein product raised to a positive real power.","authors":"Michael J Schlosser,&nbsp;Nian Hong Zhou","doi":"10.1007/s11139-021-00519-3","DOIUrl":"10.1007/s11139-021-00519-3","url":null,"abstract":"<p><p>In this paper, we study properties of the coefficients appearing in the <i>q</i>-series expansion of <math><mrow><msub><mo>∏</mo><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub><msup><mrow><mo>[</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>q</mi><mi>n</mi></msup><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>q</mi><mrow><mi>pn</mi></mrow></msup><mo>)</mo></mrow><mo>]</mo></mrow><mi>δ</mi></msup></mrow></math>, the infinite Borwein product for an arbitrary prime <i>p</i>, raised to an arbitrary positive real power <math><mi>δ</mi></math>. We use the Hardy-Ramanujan-Rademacher circle method to give an asymptotic formula for the coefficients. For <math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math> we give an estimate of their growth which enables us to partially confirm an earlier conjecture of the first author concerning an observed sign pattern of the coefficients when the exponent <math><mi>δ</mi></math> is within a specified range of positive real numbers. We further establish some vanishing and divisibility properties of the coefficients of the cube of the infinite Borwein product. We conclude with an Appendix presenting several new conjectures on precise sign patterns of infinite products raised to a real power which are similar to the conjecture we made in the <math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math> case.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9544955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Sequences in overpartitions. 多分区中的序列。
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2023-01-01 Epub Date: 2023-01-17 DOI: 10.1007/s11139-022-00685-y
George E Andrews, Ali K Uncu
{"title":"Sequences in overpartitions.","authors":"George E Andrews,&nbsp;Ali K Uncu","doi":"10.1007/s11139-022-00685-y","DOIUrl":"10.1007/s11139-022-00685-y","url":null,"abstract":"<p><p>This paper is devoted to the study of sequences in overpartitions and their relation to 2-color partitions. An extensive study of a general class of double series is required to achieve these ends.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On signatures of elliptic curves and modular forms 椭圆曲线的特征与模形式
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2022-12-29 DOI: 10.1007/s11139-022-00678-x
A. Dąbrowski, J. Pomykala, Sudhir Pujahari
{"title":"On signatures of elliptic curves and modular forms","authors":"A. Dąbrowski, J. Pomykala, Sudhir Pujahari","doi":"10.1007/s11139-022-00678-x","DOIUrl":"https://doi.org/10.1007/s11139-022-00678-x","url":null,"abstract":"","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47977954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagonalizable Thue equations: revisited 可对角化的Thue方程:重新审视
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2022-12-29 DOI: 10.1007/s11139-022-00682-1
N. Saradha, Divyum Sharma
{"title":"Diagonalizable Thue equations: revisited","authors":"N. Saradha, Divyum Sharma","doi":"10.1007/s11139-022-00682-1","DOIUrl":"https://doi.org/10.1007/s11139-022-00682-1","url":null,"abstract":"","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41699070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof of a conjecture of Sun and its extension by Guo 郭对孙猜想的证明及其推广
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2022-12-29 DOI: 10.1007/s11139-022-00668-z
Wei Xia
{"title":"Proof of a conjecture of Sun and its extension by Guo","authors":"Wei Xia","doi":"10.1007/s11139-022-00668-z","DOIUrl":"https://doi.org/10.1007/s11139-022-00668-z","url":null,"abstract":"","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46747458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sums of k-th powers and Fourier coefficients of cusp forms 顶点形式的k次幂和傅立叶系数
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2022-12-29 DOI: 10.1007/s11139-022-00677-y
Zhining Wei
{"title":"Sums of k-th powers and Fourier coefficients of cusp forms","authors":"Zhining Wei","doi":"10.1007/s11139-022-00677-y","DOIUrl":"https://doi.org/10.1007/s11139-022-00677-y","url":null,"abstract":"","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45503834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expansions over Legendre polynomials and infinite double series identities Legendre多项式与无穷二重级数恒等式的展开
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2022-12-29 DOI: 10.1007/s11139-022-00663-4
W. Chu, J. Campbell
{"title":"Expansions over Legendre polynomials and infinite double series identities","authors":"W. Chu, J. Campbell","doi":"10.1007/s11139-022-00663-4","DOIUrl":"https://doi.org/10.1007/s11139-022-00663-4","url":null,"abstract":"","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49575337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An asymptotic expansion of the hyberbolic umbilic catastrophe integral 双曲脐带突变积分的渐近展开式
IF 0.7 3区 数学
Ramanujan Journal Pub Date : 2022-12-29 DOI: 10.1007/s11139-022-00675-0
Chelo Ferreira, J. López, Ester Pérez Sinusía
{"title":"An asymptotic expansion of the hyberbolic umbilic catastrophe integral","authors":"Chelo Ferreira, J. López, Ester Pérez Sinusía","doi":"10.1007/s11139-022-00675-0","DOIUrl":"https://doi.org/10.1007/s11139-022-00675-0","url":null,"abstract":"","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52861085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信