On the infinite Borwein product raised to a positive real power.

IF 0.6 3区 数学 Q3 MATHEMATICS
Ramanujan Journal Pub Date : 2023-01-01 Epub Date: 2021-11-02 DOI:10.1007/s11139-021-00519-3
Michael J Schlosser, Nian Hong Zhou
{"title":"On the infinite Borwein product raised to a positive real power.","authors":"Michael J Schlosser,&nbsp;Nian Hong Zhou","doi":"10.1007/s11139-021-00519-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study properties of the coefficients appearing in the <i>q</i>-series expansion of <math><mrow><msub><mo>∏</mo><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub><msup><mrow><mo>[</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>q</mi><mi>n</mi></msup><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>q</mi><mrow><mi>pn</mi></mrow></msup><mo>)</mo></mrow><mo>]</mo></mrow><mi>δ</mi></msup></mrow></math>, the infinite Borwein product for an arbitrary prime <i>p</i>, raised to an arbitrary positive real power <math><mi>δ</mi></math>. We use the Hardy-Ramanujan-Rademacher circle method to give an asymptotic formula for the coefficients. For <math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math> we give an estimate of their growth which enables us to partially confirm an earlier conjecture of the first author concerning an observed sign pattern of the coefficients when the exponent <math><mi>δ</mi></math> is within a specified range of positive real numbers. We further establish some vanishing and divisibility properties of the coefficients of the cube of the infinite Borwein product. We conclude with an Appendix presenting several new conjectures on precise sign patterns of infinite products raised to a real power which are similar to the conjecture we made in the <math><mrow><mi>p</mi><mo>=</mo><mn>3</mn></mrow></math> case.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10185621/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-021-00519-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we study properties of the coefficients appearing in the q-series expansion of n1[(1-qn)/(1-qpn)]δ, the infinite Borwein product for an arbitrary prime p, raised to an arbitrary positive real power δ. We use the Hardy-Ramanujan-Rademacher circle method to give an asymptotic formula for the coefficients. For p=3 we give an estimate of their growth which enables us to partially confirm an earlier conjecture of the first author concerning an observed sign pattern of the coefficients when the exponent δ is within a specified range of positive real numbers. We further establish some vanishing and divisibility properties of the coefficients of the cube of the infinite Borwein product. We conclude with an Appendix presenting several new conjectures on precise sign patterns of infinite products raised to a real power which are similar to the conjecture we made in the p=3 case.

Abstract Image

关于无穷大的Borwein乘积被提升为一个正的实权。
本文研究了任意素数p的无穷大Borwein乘积πn≥1[(1-qn)/(1-qpn)]δ的q级数展开中出现的系数的性质,该乘积被提升为任意正实幂δ。我们使用Hardy-Ramanujan-Rademacher圆方法给出了系数的渐近公式。对于p=3,我们给出了它们增长的估计,这使我们能够部分地证实第一作者关于当指数δ在正实数的指定范围内时观察到的系数的符号模式的早期猜想。我们进一步建立了无穷大Borwein乘积的立方体系数的一些消失性和可分性。最后,我们在附录中提出了几个关于无穷乘积精确符号模式的新猜想,这些猜想与我们在p=3情况下的猜想相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ramanujan Journal
Ramanujan Journal 数学-数学
CiteScore
1.40
自引率
14.30%
发文量
133
审稿时长
6-12 weeks
期刊介绍: The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections. The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest: Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信