Koustav Banerjee, Peter Paule, Cristian-Silviu Radu, WenHuan Zeng
{"title":"关于p(n)和logp(n)的新不等式。","authors":"Koustav Banerjee, Peter Paule, Cristian-Silviu Radu, WenHuan Zeng","doi":"10.1007/s11139-022-00653-6","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>p</i>(<i>n</i>) denote the number of partitions of <i>n</i>. A new infinite family of inequalities for <i>p</i>(<i>n</i>) is presented. This generalizes a result by William Chen et al. From this infinite family, another infinite family of inequalities for <math><mrow><mo>log</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math> is derived. As an application of the latter family one, for instance obtains that for <math><mrow><mi>n</mi><mo>≥</mo><mn>120</mn></mrow></math>, <dispformula><math><mrow><mtable><mtr><mtd><mrow><mi>p</mi><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>></mo><mrow><mo>(</mo></mrow><mn>1</mn><mo>+</mo><mfrac><mi>π</mi><mrow><msqrt><mn>24</mn></msqrt><msup><mi>n</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac><mrow><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>n</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math></dispformula></p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335990/pdf/","citationCount":"3","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">New inequalities for <i>p</i>(<i>n</i>) and <ns0:math><ns0:mrow><ns0:mo>log</ns0:mo><ns0:mi>p</ns0:mi><ns0:mo>(</ns0:mo><ns0:mi>n</ns0:mi><ns0:mo>)</ns0:mo></ns0:mrow></ns0:math>.\",\"authors\":\"Koustav Banerjee, Peter Paule, Cristian-Silviu Radu, WenHuan Zeng\",\"doi\":\"10.1007/s11139-022-00653-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <i>p</i>(<i>n</i>) denote the number of partitions of <i>n</i>. A new infinite family of inequalities for <i>p</i>(<i>n</i>) is presented. This generalizes a result by William Chen et al. From this infinite family, another infinite family of inequalities for <math><mrow><mo>log</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></math> is derived. As an application of the latter family one, for instance obtains that for <math><mrow><mi>n</mi><mo>≥</mo><mn>120</mn></mrow></math>, <dispformula><math><mrow><mtable><mtr><mtd><mrow><mi>p</mi><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>></mo><mrow><mo>(</mo></mrow><mn>1</mn><mo>+</mo><mfrac><mi>π</mi><mrow><msqrt><mn>24</mn></msqrt><msup><mi>n</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><msup><mi>n</mi><mn>2</mn></msup></mfrac><mrow><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>n</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math></dispformula></p>\",\"PeriodicalId\":54511,\"journal\":{\"name\":\"Ramanujan Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335990/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ramanujan Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-022-00653-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-022-00653-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let p(n) denote the number of partitions of n. A new infinite family of inequalities for p(n) is presented. This generalizes a result by William Chen et al. From this infinite family, another infinite family of inequalities for is derived. As an application of the latter family one, for instance obtains that for ,
期刊介绍:
The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections.
The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest:
Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.