P. J. Navarro-Gázquez, M. J. Muñoz-Portero, E. Blasco-Tamarit, R. Sánchez-Tovar, J. García-Antón
{"title":"Synthesis and applications of TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes","authors":"P. J. Navarro-Gázquez, M. J. Muñoz-Portero, E. Blasco-Tamarit, R. Sánchez-Tovar, J. García-Antón","doi":"10.1515/revce-2021-0105","DOIUrl":"https://doi.org/10.1515/revce-2021-0105","url":null,"abstract":"Abstract In recent years, TiO2/ZnO hybrid nanostructures have been attracting the interest of the scientific community due to their excellent photoelectrochemical properties. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials lies in their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This factor produces a decrease in the band gap and the recombination rate and an increase in the light absorption range. The aim of this review is to perform a revision of the main methods to synthesise TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Electrochemical synthesis methods provide an easy, fast, and highly efficient route to carry out the synthesis of nanostructures such as nanowires, nanorods, nanotubes, etc. They allow us to control the stoichiometry, thickness and structure mainly by controlling the voltage, time, temperature, composition of the electrolyte, and concentration of monomers. In addition, a study of the most promising applications for TiO2/ZnO hybrid nanostructures has been carried out. In this review, the applications of dye-sensitised solar cell, photoelectrocatalytic degradation of organic compounds, photoelectrochemical water splitting, gas sensors, and lithium-ion batteries have been highlighted.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49001751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrosion inhibition relevance of semicarbazides: electronic structure, reactivity and coordination chemistry","authors":"C. Verma, M. Quraishi, K. Rhee","doi":"10.1515/revce-2022-0009","DOIUrl":"https://doi.org/10.1515/revce-2022-0009","url":null,"abstract":"Abstract Semicarbazide (OC(NH2)(N2H3)) and thiosemicarbazide (SC(NH2)(N2H3)) are well-known for their coordination complex formation ability. They contain nonbonding electrons in the form of heteroatoms (N, O and S) and π-electrons in the form of >C=O and >C=S through they strongly coordinate with the metal atoms and ions. Because of their association with this property, the Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives are widely used for different applications. They serve as building blocks for synthesis of various industrially and biologically useful chemicals. The SC, TSC and they derivatives are also serve as strong aqueous phase corrosion inhibitors. In the present reports, the coordination ability and corrosion protection tendency of Semicarbazide (SC), thiosemicarbazide (TSC) and their derivatives is surveyed and described. These compounds are widely used as inhibitors for different metals and alloys. Through their electron rich sites they adsorb on the metal surface and build corrosion protective film. Their adsorption mostly followed the Langmuir adsorption isotherm. Through their adsorption they increase the value of charge transfer resistance and decrease the value of corrosion current density. Computational studies adopted in the literature indicate that SC, TSC and their derivatives adsorb flatly and spontaneously using charge transfer mechanism.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45350258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kasra Mohammadi, Jake Immonen, Landen D. Blackburn, Jacob F. Tuttle, K. Andersson, Kody M. Powell
{"title":"A review on the application of machine learning for combustion in power generation applications","authors":"Kasra Mohammadi, Jake Immonen, Landen D. Blackburn, Jacob F. Tuttle, K. Andersson, Kody M. Powell","doi":"10.1515/revce-2021-0107","DOIUrl":"https://doi.org/10.1515/revce-2021-0107","url":null,"abstract":"Abstract Although the world is shifting toward using more renewable energy resources, combustion systems will still play an important role in the immediate future of global energy. To follow a sustainable path to the future and reduce global warming impacts, it is important to improve the efficiency and performance of combustion processes and minimize their emissions. Machine learning techniques are a cost-effective solution for improving the sustainability of combustion systems through modeling, prediction, forecasting, optimization, fault detection, and control of processes. The objective of this study is to provide a review and discussion regarding the current state of research on the applications of machine learning techniques in different combustion processes related to power generation. Depending on the type of combustion process, the applications of machine learning techniques are categorized into three main groups: (1) coal and natural gas power plants, (2) biomass combustion, and (3) carbon capture systems. This study discusses the potential benefits and challenges of machine learning in the combustion area and provides some research directions for future studies. Overall, the conducted review demonstrates that machine learning techniques can play a substantial role to shift combustion systems towards lower emission processes with improved operational flexibility and reduced operating cost.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45465547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Pan, Xu Lou, Shuangchun Yang, Xianglong Cui, Zabiti Mubuto Stephan
{"title":"Ultrasonic viscosity-reduction vacuum residue oil","authors":"Yi Pan, Xu Lou, Shuangchun Yang, Xianglong Cui, Zabiti Mubuto Stephan","doi":"10.1515/revce-2021-0086","DOIUrl":"https://doi.org/10.1515/revce-2021-0086","url":null,"abstract":"Abstract With the rapid development of economy, the demand for energy is increasing rapidly. And the output and processing amount of vacuum residue oil are also increasing year by year. The processing of vacuum residue oil is always a difficult problem in petrochemical industry. The high viscosity is the significant characteristic of vacuum residue oil. It is easy to cause serious influence in residue oil processing, such as reactor blockage. With the development of ultrasonic technology, ultrasonic viscosity reduction has become the focus of research. Its potential role in petrochemical industry has attracted more and more attention. Ultrasonic viscosity reducing vacuum residue oil is a new viscosity reducing process. Compared with the traditional viscosity reduction method, it has good viscosity reduction effect. The research progress of ultrasonic viscosity reducing vacuum residue oil is reviewed. In this paper, the mechanism of ultrasonic action, physical and chemical effects, ultrasonic viscosity reduction treatment conditions, viscosity reduction residue oil system influence and viscosity recovery, ultrasonic sound field simulation are reviewed and analyzed. In addition, ultrasound has a synergistic effect. Ultrasonic synergistic physicochemical methods (microwave; hydrogen donor) also has remarkable effects. Ultrasonic treatment technology is adopted on the basis of traditional microwave viscosity reduction and residue oil hydrogenation donor. This kind of ultrasonic collaborative method has excellent application prospect. But there are problems with this technology. The research direction of ultrasonic viscosity reduction residue oil in the future is also suggested. It can provide reference for related research.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41350085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Cazacu, Mihaela Dascalu, G. Stiubianu, A. Bele, C. Tugui, C. Racles
{"title":"From passive to emerging smart silicones","authors":"M. Cazacu, Mihaela Dascalu, G. Stiubianu, A. Bele, C. Tugui, C. Racles","doi":"10.1515/revce-2021-0089","DOIUrl":"https://doi.org/10.1515/revce-2021-0089","url":null,"abstract":"Abstract Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44370021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tengfei Shi, S. Hussain, Chuanxin Ge, Guiwu Liu, Mingsong Wang, G. Qiao
{"title":"ZIF-X (8, 67) based nanostructures for gas-sensing applications","authors":"Tengfei Shi, S. Hussain, Chuanxin Ge, Guiwu Liu, Mingsong Wang, G. Qiao","doi":"10.1515/revce-2021-0100","DOIUrl":"https://doi.org/10.1515/revce-2021-0100","url":null,"abstract":"Abstract ZIF-8 and ZIF-67 are the most investigated zeolitic imidazolate frameworks (ZIFs) materials that have aroused enormous scientific interests in numerous areas of application including electrochemistry, gas storage, separation, and sensors by reason of their fascinating structural properties. Recently, there is a rapidly growing demand for chemical gas sensors for the detection of various analytes in widespread applications including environmental pollution monitoring, clinical analysis, wastewater analysis, industrial applications, food quality, consumer products, and automobiles. In general, the key to the development of superior gas sensors is exploring innovative sensing materials. ZIF-X (8, 67) based nanostructures have demonstrated great potential as ideal sensing materials for high-performance sensing applications. In this review, the general properties and applications of ZIF-X (8, 67) including gas storage and gas adsorption are first summarized, and then the recent progress of ZIF-X (8, 67) based nanostructures for gas-sensing applications and the structure-property correlations are summarized and analyzed.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42732177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Hussain, M. Shahid, Faisal Ali, Ahmad Irfan, Z. H. Farooqi, R. Begum
{"title":"Methacrylic acid based microgels and hybrid microgels","authors":"I. Hussain, M. Shahid, Faisal Ali, Ahmad Irfan, Z. H. Farooqi, R. Begum","doi":"10.1515/revce-2021-0075","DOIUrl":"https://doi.org/10.1515/revce-2021-0075","url":null,"abstract":"Abstract Methacrylic acid based microgels have got much consideration in the last two decades because of their potential uses in different fields owing to their responsive behaviour towards external stimuli. Synthesis, properties and uses of methacrylic acid based microgels and their hybrids have been critically reviewed in this article. With minute change in external stimuli such as pH and ionic strength of medium, these microgels show quick swelling/deswelling reversibly. The methacrylic acid based microgels have been widely reported for applications in the area of nanotechnology, drug delivery, sensing and catalysis due to their responsive behaviour. A critical review of current research development in this field along with upcoming perception is presented here. This discussion is concluded with proposed probable future studies for additional growth in this field of research.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46532346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities","authors":"O. Mahlangu, M. Motsa, T. Nkambule, B. Mamba","doi":"10.1515/revce-2021-0046","DOIUrl":"https://doi.org/10.1515/revce-2021-0046","url":null,"abstract":"Abstract This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42871811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Wang, Ziyu Huang, Xiaohui Yang, Lukas Rogée, Xiaowen Huang, Xuming Zhang, S. Lau
{"title":"Review on optofluidic microreactors for photocatalysis","authors":"Lei Wang, Ziyu Huang, Xiaohui Yang, Lukas Rogée, Xiaowen Huang, Xuming Zhang, S. Lau","doi":"10.1515/revce-2021-0068","DOIUrl":"https://doi.org/10.1515/revce-2021-0068","url":null,"abstract":"Abstract Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47334879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siti Aisha Ab Rahman, A. Pang, A. Arsad, A. Sidek, A. Saidu, N. Awang, R. Mohsin, M. Abdurrahman
{"title":"The chemistry insight: epoxy sealant as an alternative remedial operation for well integrity","authors":"Siti Aisha Ab Rahman, A. Pang, A. Arsad, A. Sidek, A. Saidu, N. Awang, R. Mohsin, M. Abdurrahman","doi":"10.1515/revce-2022-0003","DOIUrl":"https://doi.org/10.1515/revce-2022-0003","url":null,"abstract":"Abstract Epoxy resin is commonly used in the oil and gas industry due to its excellent toughness, low shrinkage, good adhesive strength, and relatively good thermal resistance. It is used for water shutoff, zonal isolation, cementing, enhanced oil recovery, and preventing leakage in wells. This paper reviews the chemistry aspect of using an epoxy resin system as a sealant to prevent well leakage and it offers insights into the chemistry of the epoxy resin system, as applied in previous studies. The paper also unveils the reasons for the application of this system from the chemistry perspective, allowing this aspect to be better understood. Success in the investigated cases depended on the formulation design. The epoxide and hydroxyl functional groups have been found to contribute substantially to the excellent performance of the sealant system. Furthermore, the amine curing agent triggers the abrupt reaction of the oxirane ring to stabilise when the cured sealant is perfectly applied. Based on the findings, it is suggested that other types of epoxies, namely epoxidised oils, require further study. Finally, in terms of safety and sustainable energy, it is suggested that more curing agent and diluent studies are undertaken.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47725743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}