{"title":"Metals and metal oxides polymer frameworks as advanced anticorrosive materials: design, performance, and future direction","authors":"C. Verma, C. Hussain, M. Quraishi, K. Rhee","doi":"10.1515/revce-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract Metals (Ms) and metal oxides (MOs) possess a strong tendency to coordinate and combine with organic polymers to form respective metal–polymer frameworks (MPFs) and metal oxide polymer frameworks (MOPFs). MPFs and MOPFs can be regarded as composites of organic polymers. MPFs and MOPFs are widely used for industrial and biological applications including as anticorrosive materials in the aqueous phase as well as in the coating conditions. The presence of the Ms and MOs in the polymer coatings improves the corrosion inhibition potential of MPFs and MOPFs by improving their self-healing properties. The Ms and MOs fill the micropores and cracks through which corrosive species such as water, oxygen, and corrosive ions and salts can diffuse and destroy the coating structures. Therefore, the Ms and MOs enhance the durability as well as the effectiveness of the polymer coatings. The present review article is intended to describe the corrosion inhibition potential of some MPFs and MOPFs of some most frequently utilized transition metal elements such as Ti, Si, Zn, Ce, Ag, and Au. The mechanism of corrosion inhibition of MPFs and MOPFs is also described in the presence and absence of metal and metal oxides.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2022-0039","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Metals (Ms) and metal oxides (MOs) possess a strong tendency to coordinate and combine with organic polymers to form respective metal–polymer frameworks (MPFs) and metal oxide polymer frameworks (MOPFs). MPFs and MOPFs can be regarded as composites of organic polymers. MPFs and MOPFs are widely used for industrial and biological applications including as anticorrosive materials in the aqueous phase as well as in the coating conditions. The presence of the Ms and MOs in the polymer coatings improves the corrosion inhibition potential of MPFs and MOPFs by improving their self-healing properties. The Ms and MOs fill the micropores and cracks through which corrosive species such as water, oxygen, and corrosive ions and salts can diffuse and destroy the coating structures. Therefore, the Ms and MOs enhance the durability as well as the effectiveness of the polymer coatings. The present review article is intended to describe the corrosion inhibition potential of some MPFs and MOPFs of some most frequently utilized transition metal elements such as Ti, Si, Zn, Ce, Ag, and Au. The mechanism of corrosion inhibition of MPFs and MOPFs is also described in the presence and absence of metal and metal oxides.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.