{"title":"A body mass index-based method for “MR-only” abdominal MR-guided adaptive radiotherapy","authors":"","doi":"10.1016/j.zemedi.2022.12.001","DOIUrl":"10.1016/j.zemedi.2022.12.001","url":null,"abstract":"<div><h3>Purpose</h3><p>Dose calculation for MR-guided radiotherapy (MRgRT) at the 0.35 T MR-Linac is currently based on deformation of planning CTs (defCT) acquired for each patient. We present a simple and robust bulk density overwrite synthetic CT (sCT) method for abdominal treatments in order to streamline clinical workflows.</p></div><div><h3>Method</h3><p>Fifty-six abdominal patient treatment plans were retrospectively evaluated. All patients had been treated at the MR-Linac using MR datasets for treatment planning and plan adaption and defCT for dose calculation. Bulk density CTs (4M-sCT) were generated from MR images with four material compartments (bone, lung, air, soft tissue). The relative electron densities (RED) for bone and lung were extracted from contoured CT structure average REDs. For soft tissue, a correlation between BMI and RED was evaluated. Dose was recalculated on 4M-sCT and compared to dose distributions on defCTs assessing dose differences in the PTV and organs at risk (OAR).</p></div><div><h3>Results</h3><p>Mean RED of bone was 1.17 ± 0.02, mean RED of lung 0.17 ± 0.05. The correlation between BMI and RED for soft tissue was statistically significant (p < 0.01). PTV dose differences between 4M-sCT and defCT were D<sub>mean</sub>: −0.4 ± 1.0%, D<sub>1%</sub>: −0.3 ± 1.1% and D<sub>95%</sub>: −0.5 ± 1.0%. OARs showed D<sub>2%</sub>: −0.3 ± 1.9% and D<sub>mean</sub>: −0.1 ± 1.4% differences. Local 3D gamma index pass rates (2%/2mm) between dose calculated using 4M-sCT and defCT were 96.8 ± 2.6% (range 89.9–99.6%).</p></div><div><h3>Conclusion</h3><p>The presented method for sCT generation enables precise dose calculation for MR-only abdominal MRgRT.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001349/pdfft?md5=96a02bfed77ffd9d1bc9385391487bd1&pid=1-s2.0-S0939388922001349-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10742581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Re-evaluation of the prospective risk analysis for artificial-intelligence driven cone beam computed tomography-based online adaptive radiotherapy after one year of clinical experience","authors":"","doi":"10.1016/j.zemedi.2024.05.001","DOIUrl":"10.1016/j.zemedi.2024.05.001","url":null,"abstract":"<div><p>Cone-beam computed tomography (CBCT)-based online adaptation is increasingly being introduced into many clinics. Upon implementation of a new treatment technique, a prospective risk analysis is required and enhances workflow safety. We conducted a risk analysis using Failure Mode and Effects Analysis (FMEA) upon the introduction of an online adaptive treatment programme (Wegener et al., Z Med Phys. 2022).</p><p>A prospective risk analysis, lacking in-depth clinical experience with a treatment modality or treatment machine, relies on imagination and estimates of the occurrence of different failure modes. Therefore, we systematically documented all irregularities during the first year of online adaptation, namely all cases in which quality assurance detected undesired states potentially leading to negative consequences. Additionally, the quality of automatic contouring was evaluated. Based on those quantitative data, the risk analysis was updated by an interprofessional team. Furthermore, a hypothetical radiation therapist-only workflow during adaptive sessions was included in the prospective analysis, as opposed to the involvement of an interprofessional team performing each adaptive treatment.</p><p>A total of 126 irregularities were recorded during the first year. During that time period, many of the previously anticipated failure modes (almost) occurred, indicating that the initial prospective risk analysis captured relevant failure modes. However, some scenarios were not anticipated, emphasizing the limits of a prospective risk analysis. This underscores the need for regular updates to the risk analysis. The most critical failure modes are presented together with possible mitigation strategies. It was further noted that almost half of the reported irregularities applied to the non-adaptive treatments on this treatment machine, primarily due to a manual plan import step implemented in the institution’s workflow.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388924000497/pdfft?md5=45dc81fc3a80f7dc5d71e12b69c8edca&pid=1-s2.0-S0939388924000497-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prospective risk analysis of the online-adaptive artificial intelligence-driven workflow using the Ethos treatment system","authors":"","doi":"10.1016/j.zemedi.2022.11.004","DOIUrl":"10.1016/j.zemedi.2022.11.004","url":null,"abstract":"<div><h3>Purpose</h3><p>The recently introduced Varian Ethos system allows adjusting radiotherapy treatment plans to anatomical changes on a daily basis. The system uses artificial intelligence to speed up the process of creating adapted plans, comes with its own software solutions and requires a substantially different workflow. A detailed analysis of possible risks of the associated workflow is presented.</p></div><div><h3>Methods</h3><p>A prospective risk analysis of the adaptive workflow with the Ethos system was performed using Failure Modes and Effects Analysis (FMEA). An interprofessional team collected possible adverse events and evaluated their severity as well as their chance of occurrence and detectability. Measures to reduce the risks were discussed.</p></div><div><h3>Results</h3><p>A total of 122 events were identified, and scored. Within the 20 events with the highest-ranked risks, the following were identified: Challenges due to the stand-alone software solution with very limited connectivity to the existing record and verify software and digital patient file, unfamiliarity with the new software and its limitations and the adaption process relying on results obtained by artificial intelligence. The risk analysis led to the implementation of additional quality assurance measures in the workflow.</p></div><div><h3>Conclusions</h3><p>The thorough analysis of the risks associated with the new treatment technique was the basis for designing details of the workflow. The analysis also revealed challenges to be addressed by both, the vendor and customers. On the vendor side, this includes improving communication between their different software solutions. On the customer side, this especially includes establishing validation strategies to monitor the results of the black box adaption process making use of artificial intelligence.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001210/pdfft?md5=8005a35cd84cb01da2103d84e31bf1aa&pid=1-s2.0-S0939388922001210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10746123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Güllmar , Wei-Chan Hsu , Jürgen R. Reichenbach
{"title":"Predicting disease-related MRI patterns of multiple sclerosis through GAN-based image editing","authors":"Daniel Güllmar , Wei-Chan Hsu , Jürgen R. Reichenbach","doi":"10.1016/j.zemedi.2023.12.001","DOIUrl":"10.1016/j.zemedi.2023.12.001","url":null,"abstract":"<div><h3>Introduction</h3><p>Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI).</p></div><div><h3>Methods</h3><p>We trained the StyleGAN model unsupervised using T<sub>1</sub>-weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF).</p></div><div><h3>Results</h3><p>Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T<sub>1</sub>-weighted and ADC maps and increasing lesion extent on ADC maps.</p></div><div><h3>Conclusion</h3><p>Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923001484/pdfft?md5=41054e941858901ec78e1d44ca3d8f6d&pid=1-s2.0-S0939388923001484-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data","authors":"Tobias Fechter, Ilias Sachpazidis, Dimos Baltas","doi":"10.1016/j.zemedi.2022.10.005","DOIUrl":"10.1016/j.zemedi.2022.10.005","url":null,"abstract":"<div><p>Deep learning advanced to one of the most important technologies in almost all medical fields. Especially in areas, related to medical imaging it plays a big role. However, in interventional radiotherapy (brachytherapy) deep learning is still in an early phase. In this review, first, we investigated and scrutinised the role of deep learning in all processes of interventional radiotherapy and directly related fields. Additionally, we summarised the most recent developments. For better understanding, we provide explanations of key terms and approaches to solving common deep learning problems. To reproduce results of deep learning algorithms both source code and training data must be available. Therefore, a second focus of this work is on the analysis of the availability of open source, open data and open models. In our analysis, we were able to show that deep learning plays already a major role in some areas of interventional radiotherapy, but is still hardly present in others. Nevertheless, its impact is increasing with the years, partly self-propelled but also influenced by closely related fields. Open source, data and models are growing in number but are still scarce and unevenly distributed among different research groups. The reluctance in publishing code, data and models limits reproducibility and restricts evaluation to mono-institutional datasets. The conclusion of our analysis is that deep learning can positively change the workflow of interventional radiotherapy but there is still room for improvements when it comes to reproducible results and standardised evaluation methods.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S093938892200099X/pdfft?md5=e09e3f8ecf1904ecf8c422cf71a094c3&pid=1-s2.0-S093938892200099X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40464237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anish Raj , Fabian Tollens , Anna Caroli , Dominik Nörenberg , Frank G. Zöllner
{"title":"Automated prognosis of renal function decline in ADPKD patients using deep learning","authors":"Anish Raj , Fabian Tollens , Anna Caroli , Dominik Nörenberg , Frank G. Zöllner","doi":"10.1016/j.zemedi.2023.08.001","DOIUrl":"10.1016/j.zemedi.2023.08.001","url":null,"abstract":"<div><p>An accurate prognosis of renal function decline in Autosomal Dominant Polycystic Kidney Disease (ADPKD) is crucial for early intervention. Current biomarkers used are height-adjusted total kidney volume (HtTKV), estimated glomerular filtration rate (eGFR), and patient age. However, manually measuring kidney volume is time-consuming and subject to observer variability. Additionally, incorporating automatically generated features from kidney MRI images, along with conventional biomarkers, can enhance prognostic improvement. To address these issues, we developed two deep-learning algorithms. Firstly, an automated kidney volume segmentation model accurately calculates HtTKV. Secondly, we utilize segmented kidney volumes, predicted HtTKV, age, and baseline eGFR to predict chronic kidney disease (CKD) stages <span><math><mrow><mo>></mo></mrow></math></span>=3A, <span><math><mrow><mo>></mo></mrow></math></span>=3B, and a 30% decline in eGFR after 8 years from the baseline visit. Our approach combines a convolutional neural network (CNN) and a multi-layer perceptron (MLP). Our study included 135 subjects and the AUC scores obtained were 0.96, 0.96, and 0.95 for CKD stages <span><math><mrow><mo>></mo></mrow></math></span>=3A, <span><math><mrow><mo>></mo></mrow></math></span>=3B, and a 30% decline in eGFR, respectively. Furthermore, our algorithm achieved a Pearson correlation coefficient of 0.81 between predicted and measured eGFR decline. We extended our approach to predict distinct CKD stages after eight years with an AUC of 0.97. The proposed approach has the potential to enhance monitoring and facilitate prognosis in ADPKD patients, even in the early disease stages.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000909/pdfft?md5=f7bc065601b8dfd2bfb240a0fa1328c0&pid=1-s2.0-S0939388923000909-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10056256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yewei Wang , Yaoying Liu , Yanlin Bai , Qichao Zhou , Shouping Xu , Xueying Pang
{"title":"A generalization performance study on the boosting radiotherapy dose calculation engine based on super-resolution","authors":"Yewei Wang , Yaoying Liu , Yanlin Bai , Qichao Zhou , Shouping Xu , Xueying Pang","doi":"10.1016/j.zemedi.2022.10.006","DOIUrl":"10.1016/j.zemedi.2022.10.006","url":null,"abstract":"<div><h3>Purpose</h3><p>During the radiation treatment planning process, one of the time-consuming procedures is the final high-resolution dose calculation, which obstacles the wide application of the emerging online adaptive radiotherapy techniques (OLART). There is an urgent desire for highly accurate and efficient dose calculation methods. This study aims to develop a dose super resolution-based deep learning model for fast and accurate dose prediction in clinical practice.</p></div><div><h3>Method</h3><p>A Multi-stage Dose Super-Resolution Network (MDSR Net) architecture with sparse masks module and multi-stage progressive dose distribution restoration method were developed to predict high-resolution dose distribution using low-resolution data. A total of 340 VMAT plans from different disease sites were used, among which 240 randomly selected nasopharyngeal, lung, and cervix cases were used for model training, and the remaining 60 cases from the same sites for model benchmark testing, and additional 40 cases from the unseen site (breast and rectum) was used for model generalizability evaluation. The clinical calculated dose with a grid size of 2 mm was used as baseline dose distribution. The input included the dose distribution with 4 mm grid size and CT images. The model performance was compared with HD U-Net and cubic interpolation methods using Dose-volume histograms (DVH) metrics and global gamma analysis with 1%/1 mm and 10% low dose threshold. The correlation between the prediction error and the dose, dose gradient, and CT values was also evaluated.</p></div><div><h3>Results</h3><p>The prediction errors of MDSR were 0.06–0.84% of D<sub>mean</sub> indices, and the gamma passing rate was 83.1–91.0% on the benchmark testing dataset, and 0.02–1.03% and 71.3–90.3% for the generalization dataset respectively. The model performance was significantly higher than the HD U-Net and interpolation methods (<em>p</em> < 0.05). The mean errors of the MDSR model decreased (monotonously by 0.03–0.004%) with dose and increased (by 0.01–0.73%) with the dose gradient. There was no correlation between prediction errors and the CT values.</p></div><div><h3>Conclusion</h3><p>The proposed MDSR model achieved good agreement with the baseline high-resolution dose distribution, with small prediction errors for DVH indices and high gamma passing rate for both seen and unseen sites, indicating a robust and generalizable dose prediction model. The model can provide fast and accurate high-resolution dose distribution for clinical dose calculation, particularly for the routine practice of OLART.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001003/pdfft?md5=5beaf64e5d3600c18adc8f8420659d04&pid=1-s2.0-S0939388922001003-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10511675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artem Zatcepin , Anna Kopczak , Adrien Holzgreve , Sandra Hein , Andreas Schindler , Marco Duering , Lena Kaiser , Simon Lindner , Martin Schidlowski , Peter Bartenstein , Nathalie Albert , Matthias Brendel , Sibylle I. Ziegler
{"title":"Machine learning-based approach reveals essential features for simplified TSPO PET quantification in ischemic stroke patients","authors":"Artem Zatcepin , Anna Kopczak , Adrien Holzgreve , Sandra Hein , Andreas Schindler , Marco Duering , Lena Kaiser , Simon Lindner , Martin Schidlowski , Peter Bartenstein , Nathalie Albert , Matthias Brendel , Sibylle I. Ziegler","doi":"10.1016/j.zemedi.2022.11.008","DOIUrl":"10.1016/j.zemedi.2022.11.008","url":null,"abstract":"<div><h3>Introduction</h3><p>Neuroinflammation evaluation after acute ischemic stroke is a promising option for selecting an appropriate post-stroke treatment strategy. To assess neuroinflammation <em>in vivo</em>, translocator protein PET (TSPO PET) can be used. However, the gold standard TSPO PET quantification method includes a 90 min scan and continuous arterial blood sampling, which is challenging to perform on a routine basis. In this work, we determine what information is required for a simplified quantification approach using a machine learning algorithm.</p></div><div><h3>Materials and Methods</h3><p>We analyzed data from 18 patients with ischemic stroke who received 0–90 min [<sup>18</sup>F]GE-180 PET as well as T1-weigted (T1w), FLAIR, and arterial spin labeling (ASL) MRI scans. During PET scans, five manual venous blood samples at 5, 15, 30, 60, and 85 min post injection (p.i.) were drawn, and plasma activity concentration was measured. Total distribution volume (V<sub>T</sub>) was calculated using Logan plot with the full dynamic PET and an image-derived input function (IDIF) from the carotid arteries. IDIF was scaled by a calibration factor derived from all the measured plasma activity concentrations. The calculated V<sub>T</sub> values were used for training a random forest regressor. As input features for the model, we used three late PET frames (60–70, 70–80, and 80–90 min p.i.), the ASL image reflecting perfusion, the voxel coordinates, the lesion mask, and the five plasma activity concentrations. The algorithm was validated with the leave-one-out approach. To estimate the impact of the individual features on the algorithm’s performance, we used Shapley Additive Explanations (SHAP). Having determined that the three late PET frames and the plasma activity concentrations were the most important features, we tested a simplified quantification approach consisting of dividing a late PET frame by a plasma activity concentration. All the combinations of frames/samples were compared by means of concordance correlation coefficient and Bland-Altman plots.</p></div><div><h3>Results</h3><p>When using all the input features, the algorithm predicted V<sub>T</sub> values with high accuracy (87.8 ± 8.3%) for both lesion and non-lesion voxels. The SHAP values demonstrated high impact of the late PET frames (60–70, 70–80, and 80–90 min p.i.) and plasma activity concentrations on the V<sub>T</sub> prediction, while the influence of the ASL-derived perfusion, voxel coordinates, and the lesion mask was low. Among all the combinations of the late PET frames and plasma activity concentrations, the 70–80 min p.i. frame divided by the 30 min p.i. plasma sample produced the closest V<sub>T</sub> estimate in the ischemic lesion.</p></div><div><h3>Conclusion</h3><p>Reliable TSPO PET quantification is achievable by using a single late PET frame divided by a late blood sample activity concentration.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001283/pdfft?md5=f1499fef4d918f1109e5e15fcbad1787&pid=1-s2.0-S0939388922001283-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10567400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anika Strittmatter, Lothar R. Schad, Frank G. Zöllner
{"title":"Deep learning-based affine medical image registration for multimodal minimal-invasive image-guided interventions – A comparative study on generalizability","authors":"Anika Strittmatter, Lothar R. Schad, Frank G. Zöllner","doi":"10.1016/j.zemedi.2023.05.003","DOIUrl":"10.1016/j.zemedi.2023.05.003","url":null,"abstract":"<div><p>Multimodal image registration is applied in medical image analysis as it allows the integration of complementary data from multiple imaging modalities. In recent years, various neural network-based approaches for medical image registration have been presented in papers, but due to the use of different datasets, a fair comparison is not possible. In this research 20 different neural networks for an affine registration of medical images were implemented. The networks’ performance and the networks’ generalizability to new datasets were evaluated using two multimodal datasets - a synthetic and a real patient dataset - of three-dimensional CT and MR images of the liver. The networks were first trained semi-supervised using the synthetic dataset and then evaluated on the synthetic dataset and the unseen patient dataset. Afterwards, the networks were finetuned on the patient dataset and subsequently evaluated on the patient dataset. The networks were compared using our own developed CNN as benchmark and a conventional affine registration with SimpleElastix as baseline. Six networks improved the pre-registration Dice coefficient of the synthetic dataset significantly (<em>p</em>-value <span><math><mrow><mo><</mo></mrow></math></span> 0.05) and nine networks improved the pre-registration Dice coefficient of the patient dataset significantly and are therefore able to generalize to the new datasets used in our experiments. Many different machine learning-based methods have been proposed for affine multimodal medical image registration, but few are generalizable to new data and applications. It is therefore necessary to conduct further research in order to develop medical image registration techniques that can be applied more widely.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000715/pdfft?md5=8bc88c35e2779691cc7ef560e61e14e3&pid=1-s2.0-S0939388923000715-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9683952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}