Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences最新文献

筛选
英文 中文
Kelvin–Helmholtz instability in magnetically quantized dense plasmas 磁量子化致密等离子体中的开尔文-亥姆霍兹不稳定性
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-18 DOI: 10.1515/zna-2023-0123
Abdur Rasheed, Asif Nazir, Areeb Fatima, Bilal Ramzan, Zubia Kiran, Muhammad Jamil
{"title":"Kelvin–Helmholtz instability in magnetically quantized dense plasmas","authors":"Abdur Rasheed, Asif Nazir, Areeb Fatima, Bilal Ramzan, Zubia Kiran, Muhammad Jamil","doi":"10.1515/zna-2023-0123","DOIUrl":"https://doi.org/10.1515/zna-2023-0123","url":null,"abstract":"Abstract This study deals with the instability of shear waves, also known as Kelvin–Helmholtz instability, propagating with a complex frequency ” ω ” in magnetically quantized dense gyro-viscous plasmas. The instability arises from the transverse spatial shear of the streaming velocity, which evolves from the DC electric and magnetic fields. In dense plasmas, quantum effects contribute through magnetically quantized statistical Fermi pressure, tunnelling potential and exchange-correlation potential. The contribution of the shear profile, the drift velocity, the number density of medium species, the dc magnetic field and the propagation angle θ of the wavevector on the instability is pointed out analytically as well as graphically. By varying the angle, shear size and density of plasma particles, the growth rate is enhanced. It does not, however, change as the streaming speed increases. This work seeks applications to study the characteristics of complex media like astrophysical and semiconductor plasmas [R. P. Drake, “Hydrodynamic instabilities in astrophysics and in laboratory high-energy–density systems,” Plasma Phys. Control. Fusion , vol. 47, p. B419, 2005].","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135823893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nambu Jona-Lasinio model of relativistic superconductivity Nambu Jona-Lasinio相对论超导模型
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-18 DOI: 10.1515/zna-2023-0120
Stanley A. Bruce
{"title":"Nambu Jona-Lasinio model of relativistic superconductivity","authors":"Stanley A. Bruce","doi":"10.1515/zna-2023-0120","DOIUrl":"https://doi.org/10.1515/zna-2023-0120","url":null,"abstract":"Abstract We propose a Nambu Jona-Lasinio (NJL) effective model of relativistic superconductivity. In this framework, we discuss possible electromagnetic (EM) behaviors of (specifically) type-II superconductivity in line with the nonrelativistic Ginzburg–Landau (GL) theory. We comment on possible solitonic solutions of this model. Our investigation could be of relevance to describe type-II proton superconductivity in neutron-star crusts.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-conscious nanofluids: exploring heat transfer performance with graphitic carbon nitride nanoparticles 生态意识纳米流体:探索与石墨氮化碳纳米颗粒的传热性能
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-18 DOI: 10.1515/zna-2023-0192
Vijayakumar Gokul, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman
{"title":"Eco-conscious nanofluids: exploring heat transfer performance with graphitic carbon nitride nanoparticles","authors":"Vijayakumar Gokul, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman","doi":"10.1515/zna-2023-0192","DOIUrl":"https://doi.org/10.1515/zna-2023-0192","url":null,"abstract":"Abstract The work explores the heat transfer capabilities of semiconducting graphitic carbon nitride (g-C 3 N 4 ) nanofluids. Also, it presents a sustainable and eco-friendly method for synthesizing g-C 3 N 4 nanoparticles using commercially available rice flour as a natural carbon precursor through hydrothermal treatment. The synthesized sample subjected to various characterizations, including analysis of their structure, morphology, thermal properties, and optical properties. The optical bandgap (2.66 eV) is deduced through Tauc plot analysis and reveals the semiconducting nature of the sample. The formation of g-C 3 N 4 is confirmed by various spectroscopic techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and Raman spectroscopy. Thermogravimetric analysis (TGA) demonstrates the nanoparticles’ excellent thermal stability up to 550 °C, indicating potential applications in heat transfer fluids. The investigation of concentration-dependent thermal diffusivity variation using the sensitive mode mismatched dual beam thermal lens technique highlights the potential of g-C 3 N 4 semiconductor nanofluid as an organic and metal-free additive in industry-demanding coolant applications.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of a non-classical moving boundary problem with control function and generalized latent heat as a function of moving interface 具有控制函数和广义潜热作为运动界面函数的非经典运动边界问题的数值模拟
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-13 DOI: 10.1515/zna-2023-0226
None Jitendra, Vikas Chaurasiya, Kabindra Nath Rai, Jitendra Singh
{"title":"Numerical simulation of a non-classical moving boundary problem with control function and generalized latent heat as a function of moving interface","authors":"None Jitendra, Vikas Chaurasiya, Kabindra Nath Rai, Jitendra Singh","doi":"10.1515/zna-2023-0226","DOIUrl":"https://doi.org/10.1515/zna-2023-0226","url":null,"abstract":"Abstract In this paper, the work is concerned with the study of moving boundary based on non-classical heat equation that includes a time dependent heat flux and convection. The latent heat is represented as a function of the moving interface. Mathematical model accounts for a control function varying with heat flux. We have obtained the explicit solution of the given mathematical model in the presence of convection and a control function. The Legendre wavelet Galerkin approach (LWGA) is used to solve the mathematical problem. In a particular case, our numerical results were compared with previous results and found to be in excellent agreement. Moreover, the current numerical technique is more efficient and accurate in comparison to the previous available method. An extensive analysis of the problem parameters is presented. It is found that the control function offers a significant contribution during the melting or freezing of a PCM. A greater value of the heat flux accelerates the rate of propagation of interface. Convection heat transfer increases the speed of the interface. Results obtained from the current study are expected to improve the fundamental understanding of heat transfer and aid in sublimation and desorption like physical phenomena.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135804613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why does momentum depend on inertia? 为什么动量取决于惯性?
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-12 DOI: 10.1515/zna-2023-0168
Fulvio Melia
{"title":"Why does momentum depend on inertia?","authors":"Fulvio Melia","doi":"10.1515/zna-2023-0168","DOIUrl":"https://doi.org/10.1515/zna-2023-0168","url":null,"abstract":"Abstract Momentum is characterized in terms of inertial mass for particles moving at less than the speed of light, but entirely in terms of their energy for those lacking inertia. Does this difference suggest a physically distinct origin of momentum in the two cases and, if so, what is actually being conserved in interactions involving both types of particle? In this paper, we consider a recently proposed gravitational origin for rest-mass energy to demonstrate that a single definition of momentum applies to all particles, massless or otherwise. When introduced into this description, inertial mass is merely a surrogate for the particle’s ‘free’ energy, but does not imply an origin of momentum different from that of particles without mass.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135969235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of dust streaming on arbitrary amplitude solitary waves in superthermal polarized space dusty plasma 超热极化空间尘埃等离子体中尘流对任意振幅孤波的影响
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-12 DOI: 10.1515/zna-2023-0104
Syeda Neelam Naeem, Anisa Qamar, Ata-ur Rahman, Wedad Albalawi
{"title":"The effect of dust streaming on arbitrary amplitude solitary waves in superthermal polarized space dusty plasma","authors":"Syeda Neelam Naeem, Anisa Qamar, Ata-ur Rahman, Wedad Albalawi","doi":"10.1515/zna-2023-0104","DOIUrl":"https://doi.org/10.1515/zna-2023-0104","url":null,"abstract":"Abstract The impact of dust streaming and polarization force on dust acoustic solitary waves (DASWs) is examined in a non-magnetized dusty plasma made up of negatively charged dust, superthermal ions, and Maxwellian electrons. In the linear limit, the dispersion relation is derived and numerically analyzed. In order to explore the characteristics of arbitrary amplitude DASWs, a Sagdeev potential technique is used. It is explored how the existence domain and characteristics of the DASWs are affected by the polarization force connected to the superthermality index of ions and dust streaming. The relevance of the present study to space dusty plasma, in particular to Saturn’s F-ring, is highlighted.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transmittance properties of the one-dimensional gyroidal superconductor photonic crystals 一维陀螺超导体光子晶体的透射特性
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-09 DOI: 10.1515/zna-2023-0179
Hussein A. Elsayed, Chandra Sekhar Mishra, Abdulkarem H. M. Almawgani, Yahya Ali Abdelrahman Ali, Ahmed Mehaney
{"title":"The transmittance properties of the one-dimensional gyroidal superconductor photonic crystals","authors":"Hussein A. Elsayed, Chandra Sekhar Mishra, Abdulkarem H. M. Almawgani, Yahya Ali Abdelrahman Ali, Ahmed Mehaney","doi":"10.1515/zna-2023-0179","DOIUrl":"https://doi.org/10.1515/zna-2023-0179","url":null,"abstract":"Abstract In this study, the transfer matrix method is used to analyze the optical properties of a layered structure, {Air(SrTiO 3 /BSCCO) 20 Substrate}, consisting of air, SrTiO 3 , BSCCO (bismuth strontium calcium copper oxide) bilayers, and a substrate. This paper aims to investigate the transmittance spectra of two proposed one-dimensional (1D) structures, including a conventional superconductor photonic crystal (PC) and a gyroidal superconductor PC at infrared (IR) wavelengths. A comprehensive analysis has been carried out to provide useful insights into the optical properties and the behavior of the proposed structure, highlighting the impact of many parameters, such as refractive index, filling fraction, and layer thickness. The numerical findings showed that the permittivity of the BSCCO superconductor of a gyroidal geometry takes a different response compared to the conventional one. Notably, the filling fraction and refractive index of the host material have a significant control on both real and imaginary parts of the gyroidal BSCCO permittivity through the considered wavelengths. Thus, the proposed design provides high transmittivity outside the obtained photonic band gap compared to the conventional one. We believe that the designed one-dimensional gyroidal BSCCO photonic crystals could act as an efficient reflector through near IR for optoelectronics and energy applications.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135044400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling transport properties in rare-earth-substituted nanostructured bismuth telluride for thermoelectric application 揭示稀土取代纳米结构碲化铋热电应用的输运性质
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-09 DOI: 10.1515/zna-2023-0162
Muhammad Waqas, Abdul Shakoor, Muhammad Nadeem, Ghazi Aman Nowsherwan, Ahmar Ali, Muhammad Fasih Aamir, Shahbaz Younas Bhatti, Ahmed Bilal, Anis Ur Rehman
{"title":"Unveiling transport properties in rare-earth-substituted nanostructured bismuth telluride for thermoelectric application","authors":"Muhammad Waqas, Abdul Shakoor, Muhammad Nadeem, Ghazi Aman Nowsherwan, Ahmar Ali, Muhammad Fasih Aamir, Shahbaz Younas Bhatti, Ahmed Bilal, Anis Ur Rehman","doi":"10.1515/zna-2023-0162","DOIUrl":"https://doi.org/10.1515/zna-2023-0162","url":null,"abstract":"Abstract Thermoelectrics is an emerging technology in the field of renewable energy sources, and the exploration of doped materials has opened up new avenues for enhancing their performance. La-doped thermoelectric materials with the composition Bi 2− x La x Te 3 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) were synthesized using the WOWS sol–gel method and sintered at 500 °C for 5 h. X-ray diffraction analysis confirmed a rhombohedral crystal structure with lattice constants of a = b = 4.41(2) Å and c = 29.81(3) Å. Scanning electron microscopy revealed particle-like shapes (0.7–2.5 μm). Fourier transform infrared spectroscopy confirmed the single-phase nature of the samples. DC electrical measurements showed increasing conductivity with temperature. AC electrical analysis demonstrated frequency-dependent behavior with increasing AC conductivity and decreasing loss factor and dielectric constants. Seebeck coefficient measurements exhibited temperature-dependent behavior. Thermal transport properties showed increasing thermal conductivity and volumetric specific heat with temperature, while thermal diffusivity decreased. The composition Bi 1.9 La 0.1 Te 3 with x = 0.1 doping displayed lower thermal conductivity, higher electrical conductivity, and a higher ZT value, making it more suitable for thermoelectric applications. Furthermore, the sample Bi 1.8 La 0.2 Te 3 exhibited favorable characteristics for energy storage applications compared to the other samples. These findings provide insights into the potential applications of La-doped bismuth telluride compounds in thermoelectric and energy storage systems.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-10-01 DOI: 10.1515/zna-2023-frontmatter10
{"title":"Frontmatter","authors":"","doi":"10.1515/zna-2023-frontmatter10","DOIUrl":"https://doi.org/10.1515/zna-2023-frontmatter10","url":null,"abstract":"","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135606992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, structure, and luminescence properties of double perovskites Ba2.9Sr0.1WO6: Eu3+ red emitting phosphor 双钙钛矿Ba2.9Sr0.1WO6: Eu3+红色发光荧光粉的合成、结构及发光性能
4区 物理与天体物理
Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-09-29 DOI: 10.1515/zna-2023-0212
Arif Ullah, Jinghao Zhuang, Zheng Liu, Xiaozhan Yang, Wenlin Feng
{"title":"Synthesis, structure, and luminescence properties of double perovskites Ba<sub>2.9</sub>Sr<sub>0.1</sub>WO<sub>6</sub>: Eu<sup>3+</sup> red emitting phosphor","authors":"Arif Ullah, Jinghao Zhuang, Zheng Liu, Xiaozhan Yang, Wenlin Feng","doi":"10.1515/zna-2023-0212","DOIUrl":"https://doi.org/10.1515/zna-2023-0212","url":null,"abstract":"Abstract In this work, the phosphors of Eu 3+ ions doped Ba 2.9 Sr 0.1 WO 6 were successfully synthesized by the high-temperature solid-state method. The luminescence properties, including the emission and excitation spectra, fluorescent lifetimes, and CIE chromaticity coordinates were characterized. The crystal structure and composite of the samples were investigated by XRD (X-ray diffraction), and HRTEM (high-resolution transmission electron microscope). The emission spectra consist of the characteristic peak of Eu 3+ excitation at 393 nm; the leading emission peak at 618 nm can be ascribed to the transition of 7 F 0 → 5 L 6 . The optimal red emission is achieved by 2 % Eu 3+ doping. This red Ba 2.9 Sr 0.1 WO 6 : Eu 3+ has good luminescent properties and may have potential application in white LEDs.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135132378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信