{"title":"Eco-conscious nanofluids: exploring heat transfer performance with graphitic carbon nitride nanoparticles","authors":"Vijayakumar Gokul, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman","doi":"10.1515/zna-2023-0192","DOIUrl":null,"url":null,"abstract":"Abstract The work explores the heat transfer capabilities of semiconducting graphitic carbon nitride (g-C 3 N 4 ) nanofluids. Also, it presents a sustainable and eco-friendly method for synthesizing g-C 3 N 4 nanoparticles using commercially available rice flour as a natural carbon precursor through hydrothermal treatment. The synthesized sample subjected to various characterizations, including analysis of their structure, morphology, thermal properties, and optical properties. The optical bandgap (2.66 eV) is deduced through Tauc plot analysis and reveals the semiconducting nature of the sample. The formation of g-C 3 N 4 is confirmed by various spectroscopic techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and Raman spectroscopy. Thermogravimetric analysis (TGA) demonstrates the nanoparticles’ excellent thermal stability up to 550 °C, indicating potential applications in heat transfer fluids. The investigation of concentration-dependent thermal diffusivity variation using the sensitive mode mismatched dual beam thermal lens technique highlights the potential of g-C 3 N 4 semiconductor nanofluid as an organic and metal-free additive in industry-demanding coolant applications.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0192","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The work explores the heat transfer capabilities of semiconducting graphitic carbon nitride (g-C 3 N 4 ) nanofluids. Also, it presents a sustainable and eco-friendly method for synthesizing g-C 3 N 4 nanoparticles using commercially available rice flour as a natural carbon precursor through hydrothermal treatment. The synthesized sample subjected to various characterizations, including analysis of their structure, morphology, thermal properties, and optical properties. The optical bandgap (2.66 eV) is deduced through Tauc plot analysis and reveals the semiconducting nature of the sample. The formation of g-C 3 N 4 is confirmed by various spectroscopic techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and Raman spectroscopy. Thermogravimetric analysis (TGA) demonstrates the nanoparticles’ excellent thermal stability up to 550 °C, indicating potential applications in heat transfer fluids. The investigation of concentration-dependent thermal diffusivity variation using the sensitive mode mismatched dual beam thermal lens technique highlights the potential of g-C 3 N 4 semiconductor nanofluid as an organic and metal-free additive in industry-demanding coolant applications.
期刊介绍:
A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. Authors are encouraged to pay particular attention to a clear exposition of their respective subject, addressing a wide readership. In accordance with the name of our journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena. In particular, we welcome experiment-oriented contributions.