{"title":"为什么动量取决于惯性?","authors":"Fulvio Melia","doi":"10.1515/zna-2023-0168","DOIUrl":null,"url":null,"abstract":"Abstract Momentum is characterized in terms of inertial mass for particles moving at less than the speed of light, but entirely in terms of their energy for those lacking inertia. Does this difference suggest a physically distinct origin of momentum in the two cases and, if so, what is actually being conserved in interactions involving both types of particle? In this paper, we consider a recently proposed gravitational origin for rest-mass energy to demonstrate that a single definition of momentum applies to all particles, massless or otherwise. When introduced into this description, inertial mass is merely a surrogate for the particle’s ‘free’ energy, but does not imply an origin of momentum different from that of particles without mass.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":"37 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why does momentum depend on inertia?\",\"authors\":\"Fulvio Melia\",\"doi\":\"10.1515/zna-2023-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Momentum is characterized in terms of inertial mass for particles moving at less than the speed of light, but entirely in terms of their energy for those lacking inertia. Does this difference suggest a physically distinct origin of momentum in the two cases and, if so, what is actually being conserved in interactions involving both types of particle? In this paper, we consider a recently proposed gravitational origin for rest-mass energy to demonstrate that a single definition of momentum applies to all particles, massless or otherwise. When introduced into this description, inertial mass is merely a surrogate for the particle’s ‘free’ energy, but does not imply an origin of momentum different from that of particles without mass.\",\"PeriodicalId\":54395,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0168\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0168","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Abstract Momentum is characterized in terms of inertial mass for particles moving at less than the speed of light, but entirely in terms of their energy for those lacking inertia. Does this difference suggest a physically distinct origin of momentum in the two cases and, if so, what is actually being conserved in interactions involving both types of particle? In this paper, we consider a recently proposed gravitational origin for rest-mass energy to demonstrate that a single definition of momentum applies to all particles, massless or otherwise. When introduced into this description, inertial mass is merely a surrogate for the particle’s ‘free’ energy, but does not imply an origin of momentum different from that of particles without mass.
期刊介绍:
A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. Authors are encouraged to pay particular attention to a clear exposition of their respective subject, addressing a wide readership. In accordance with the name of our journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena. In particular, we welcome experiment-oriented contributions.