Vehicular Communications最新文献

筛选
英文 中文
Federated learning on the go: Building stable clusters and optimizing resources on the road 移动中的联合学习:在旅途中构建稳定的集群并优化资源
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100870
Sawsan AbdulRahman , Safa Otoum , Ouns Bouachir
{"title":"Federated learning on the go: Building stable clusters and optimizing resources on the road","authors":"Sawsan AbdulRahman ,&nbsp;Safa Otoum ,&nbsp;Ouns Bouachir","doi":"10.1016/j.vehcom.2024.100870","DOIUrl":"10.1016/j.vehcom.2024.100870","url":null,"abstract":"<div><div>With the proliferation of Internet of Things, leveraging federated learning (FL) for collaborative model training has become paramount. It has turned into a powerful tool to analyze on-device data and produce real-time applications while safeguarding user privacy. However, in vehicular networks, the dynamic nature of vehicles, coupled with resource constraints, gives rise to new challenges for efficient FL implementation. In this paper, we address the critical problems of optimizing computational and communication resources and selecting the appropriate vehicle to participate in the process. Our proposed scheme bypasses the communication bottleneck by forming homogeneous groups based on the vehicles mobility/direction and their computing resources. Vehicle-to-Vehicle communication is then adapted within each group, and communication with an on-road edge node is orchestrated by a designated Cluster Head (CH). The latter is selected based on several factors, including connectivity index, mobility coherence, and computational resources. This selection process is designed to be robust against potential cheating attempts, which prevents nodes from avoiding the role of CH to conserve their resources. Moreover, we propose a matching algorithm that pairs each vehicular group with the appropriate edge nodes responsible for aggregating local models and facilitating communication with the server, which subsequently processes the models from all edges. The conducted experiments show promising results compared to benchmarks by achieving: (1) significantly higher amounts of trained data per iteration through strategic CH selection, leading to improved model accuracy and reduced communication overhead. Additionally, our approach demonstrates (2) efficient network load management, (3) faster convergence times in later training rounds, and (4) superior cluster stability.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100870"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VeTraSPM: Novel vehicle trajectory data sequential pattern mining algorithm for link criticality analysis VeTraSPM:用于链路临界度分析的新型车辆轨迹数据序列模式挖掘算法
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100869
Nourhan Bachir , Chamseddine Zaki , Hassan Harb , Roland Billen
{"title":"VeTraSPM: Novel vehicle trajectory data sequential pattern mining algorithm for link criticality analysis","authors":"Nourhan Bachir ,&nbsp;Chamseddine Zaki ,&nbsp;Hassan Harb ,&nbsp;Roland Billen","doi":"10.1016/j.vehcom.2024.100869","DOIUrl":"10.1016/j.vehcom.2024.100869","url":null,"abstract":"<div><div>This paper presents VeTraSPM (Vehicle Trajectory Data Sequential Pattern Mining), a novel algorithm designed to address the limitations of existing sequential pattern mining methods when applied to vehicle trajectory data. Current algorithms fail to capture essential characteristics such as directional flow on one-way roads (e.g., “AB” is valid but not “BA”), connectivity constraints at junctions, and the repetition of links within sequences. VeTraSPM overcomes these gaps by accurately extracting frequent patterns and confident rules while leveraging vertical projection for efficient memory and space management, enabling it to handle large datasets. Furthermore, the algorithm incorporates partitioning and parallelization techniques, further enhancing its scalability for real-world traffic environments. Three new metrics—FqMS, CMS, and SIS—are introduced to assess link criticality based on the consistent occurrence of links across movement patterns at various levels. The efficiency of VeTraSPM is demonstrated through a comparative analysis with baseline algorithms, showcasing its superior performance. The visualization of the proposed metrics offers valuable insights into link importance, supporting proactive traffic management strategies. A case study using real-world datasets from Luxembourg and Monaco validates its scalability and practical value in enhancing the resilience of urban traffic networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100869"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A data sharing scheme based on blockchain for privacy protection certification of Internet of Vehicles 基于区块链的车联网隐私保护认证数据共享方案
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100864
Fengjun Shang, Xinxin Deng
{"title":"A data sharing scheme based on blockchain for privacy protection certification of Internet of Vehicles","authors":"Fengjun Shang,&nbsp;Xinxin Deng","doi":"10.1016/j.vehcom.2024.100864","DOIUrl":"10.1016/j.vehcom.2024.100864","url":null,"abstract":"<div><div>With the vigorous development of Internet of Vehicles (IoV) technology, modern cars equipped with advanced on-board systems are continuously generating massive amounts of data. Utilizing this data can improve driving safety and achieve better service quality in smart transportation systems. Therefore, ensuring the efficiency and security of data sharing is an important issue. Integrating IoV and blockchain technology can provide solutions to the data sharing security problems. This paper researches on IoV data sharing based on blockchain technology. In view of the problem that Internet of Vehicles data is susceptible to denial of service attacks, central failures and privacy leaks, we propose a data sharing scheme based on blockchain for privacy protection certification of Internet of Vehicles. Firstly, a decentralized privacy protection authentication framework is proposed is based on blockchain. Authenticated communication is performed between vehicle nodes and roadside units (as trusted authorities) by using authentication and access authentication schemes. Secondly, the trusted cluster head selected through the weight indicator is responsible for forwarding the information to the Trust Authority (TA), which then forwards the data to cloud storage and records the certificate and hash value on the distributed blockchain, along with other related information. In addition, the solution also uses a practical Byzantine fault-tolerant consensus algorithm to ensure the security and reliability of the blockchain, as well as the efficiency and decentralization of cloud storage. Finally, the TA revokes the certificate of the malicious vehicle node and clears it from the blockchain. Security analysis experiments show that our solution can effectively resist various threats such as counterfeiting, replay attacks, forgery and data tampering, thereby ensuring the security of Internet of Vehicles data sharing. Compared to the proposed solution, our performance has improved by 50.12%, 41.62%, 6.01%, and 29.11%, respectively.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100864"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Offloading in V2X with road side units: Deep reinforcement learning 在 V2X 中使用路侧装置进行卸载:深度强化学习
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100862
Widhi Yahya , Ying-Dar Lin , Faysal Marzuk , Piotr Chołda , Yuan-Cheng Lai
{"title":"Offloading in V2X with road side units: Deep reinforcement learning","authors":"Widhi Yahya ,&nbsp;Ying-Dar Lin ,&nbsp;Faysal Marzuk ,&nbsp;Piotr Chołda ,&nbsp;Yuan-Cheng Lai","doi":"10.1016/j.vehcom.2024.100862","DOIUrl":"10.1016/j.vehcom.2024.100862","url":null,"abstract":"<div><div>Traffic offloading is crucial for reducing computing latency in distributed edge systems such as vehicle-to-everything (V2X) networks, which use roadside units (RSUs) and access network mobile edge computing (AN-MEC) with ML agents. Traffic offloading is part of the control plane problem, which requires fast decision-making in complex V2X systems. This study presents a novel ratio-based offloading strategy using the twin delayed deep deterministic policy gradient (TD3) algorithm to optimize offloading ratios in a two-tier V2X system, enabling computation at both RSUs and the edge. The offloading optimization covers both vertical and horizontal offloading, introducing a continuous search space that needs fast decision-making to accommodate fluctuating traffic in complex V2X systems. We developed a V2X environment to evaluate the performance of the offloading agent, incorporating latency models, state and action definitions, and reward structures. A comparative analysis with metaheuristic simulated annealing (SA) is conducted, and the impact of single versus multiple offloading agents with deployment options at a centralized central office (CO) is examined. Evaluation results indicate that TD3's decision time is five orders of magnitude faster than SA. For 10 and 50 sites, SA takes 602 and 20,421 seconds, respectively, while single-agent TD3 requires 4 to 24 milliseconds and multi-agent TD3 takes 1 to 3 milliseconds. The average latency for SA ranges from 0.18 to 0.32 milliseconds, single-agent TD3 from 0.26 to 0.5 milliseconds, and multi-agent TD3 from 0.22 to 0.45 milliseconds, demonstrating that TD3 approximates SA performance with initial training.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100862"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redundant task offloading with dual-reliability in MEC-assisted vehicular networks mec辅助车辆网络双可靠性冗余任务卸载
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100867
Yaoxin Duan , Wendi Nie , Victor C.S. Lee , Kai Liu
{"title":"Redundant task offloading with dual-reliability in MEC-assisted vehicular networks","authors":"Yaoxin Duan ,&nbsp;Wendi Nie ,&nbsp;Victor C.S. Lee ,&nbsp;Kai Liu","doi":"10.1016/j.vehcom.2024.100867","DOIUrl":"10.1016/j.vehcom.2024.100867","url":null,"abstract":"<div><div>With the rise and development of intelligent vehicles, the computation capability of vehicles has increased rapidly and considerably. Vehicle-to-Vehicle (V2V) offloading, in which computation-intensive tasks are offloaded to underutilized vehicles, has been proposed. However, V2V offloading faces the challenges of task transmission reliability and task computation reliability. In V2V offloading, tasks are transmitted via V2V communication, which is volatile and spotty because of rapidly changing network topology and channel conditions between vehicles, resulting in time-varying delays of task transmission and even loss of connectivity. Thus, it is challenging to complete V2V offloading within a given delay constraint. In addition, the realistic diverse vehicular environment always comes with malicious vehicles, which can cause irreparable harm to V2V offloading. Therefore, in this paper, we propose a V2V task offloading scheme called Redundant Task Offloading with Dual-Reliability (RTODR), aiming to minimize task offloading costs while ensuring both task transmission reliability and task computation reliability in a Mobile Edge Computing (MEC)-assisted vehicular network. Specifically, for a computation task, a V2V connection is considered reliable only if the task can be successfully transmitted via the V2V connection within the deadline of the task. To ensure task computation reliability, task computation results from a trusty service vehicle are considered to be reliable. Then we formally model a Minimizing Task Offloading Cost with Dual-reliability (MTOCD) problem, which is mathematically formulated as a multi-objective optimization problem. Afterward, we propose a heuristic redundant task offloading algorithm, named Dual-Reliability Offloading (DRO), to solve the problem. Finally, comprehensive experiments have been conducted to demonstrate that RTODR achieves lower costs compared with other approaches.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100867"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey of intelligent reflecting surfaces: Performance analysis, extensions, potential challenges, and open research issues 智能反射面调查:性能分析、扩展、潜在挑战和开放研究问题
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100859
Adil Khan , Syed Agha Hassnain Mohsan , Abdelrahman Elfikky , Ayman I. Boghdady , Shabeer Ahmad , Nisreen Innab
{"title":"A survey of intelligent reflecting surfaces: Performance analysis, extensions, potential challenges, and open research issues","authors":"Adil Khan ,&nbsp;Syed Agha Hassnain Mohsan ,&nbsp;Abdelrahman Elfikky ,&nbsp;Ayman I. Boghdady ,&nbsp;Shabeer Ahmad ,&nbsp;Nisreen Innab","doi":"10.1016/j.vehcom.2024.100859","DOIUrl":"10.1016/j.vehcom.2024.100859","url":null,"abstract":"<div><div>The rapid advancements in wireless communication have underscored the need for innovative solutions to enhance network performance, spectral efficiency, and energy savings. Intelligent Reflecting Surface (IRS) technology has emerged as a transformative approach that passively reconfigures wireless propagation environments, offering significant improvements without active power consumption. This survey provides a comprehensive analysis of IRS technology, covering its architecture, operational principles, and integration into next-generation wireless networks. We examine key performance metrics in various application scenarios, demonstrating IRS's potential to improve coverage, signal quality, and energy efficiency, with up to 40% higher spectral efficiency and substantial energy savings over traditional networks. The survey also explores the integration of IRS with advanced multiple access techniques such as Non-Orthogonal Multiple Access (NOMA) and Terahertz (THz) communication, positioning IRS as a critical enabler in future 6G networks. This survey contributes by offering an in-depth review of IRS design principles and operational mechanisms, presenting a performance analysis in various scenarios that highlights IRS's ability to improve network efficiency, and identifying practical challenges and open research areas, such as the need for robust channel estimation methods, effective interference management in dense networks, and IRS solutions scalable for urban and rural deployments. Additionally, we discuss the future trajectory of IRS standardization and the regulatory frameworks essential for large-scale deployment. By summarizing advancements and identifying key research directions, this survey aims to serve as a valuable reference for researchers and practitioners seeking to advance IRS technology in future wireless networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100859"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of smart vehicles in smart cities: Dangers, impacts, and the threat landscape 回顾智能城市中的智能车辆:危险、影响和威胁状况
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-02-01 DOI: 10.1016/j.vehcom.2024.100871
Brooke Kidmose
{"title":"A review of smart vehicles in smart cities: Dangers, impacts, and the threat landscape","authors":"Brooke Kidmose","doi":"10.1016/j.vehcom.2024.100871","DOIUrl":"10.1016/j.vehcom.2024.100871","url":null,"abstract":"<div><div>The humble, mechanical automobile has gradually evolved into our modern connected and autonomous vehicles (CAVs)—also known as “smart vehicles.” Similarly, our cities are gradually developing into “smart cities,” where municipal services from transportation networks to utilities to recycling to law enforcement are integrated. The idea, with both smart vehicles and smart cities, is that more data leads to better, more informed decisions. Smart vehicles and smart cities would acquire data from their own equipment (e.g., cameras, sensors) and from their connections—e.g., connections to fellow smart vehicles, to road-side infrastructure, to smart transportation systems (STSs), etc.</div><div>Unfortunately, the paradigm of smart vehicles in smart cities is rife with danger and ripe for misuse. One vulnerable system or service could become an attacker's entry point, facilitating access to every connected vehicle, device, etc. Worse, smart vehicles and smart cities are inherently cyber-physical; a cyberattack can have physical consequences, including destruction of infrastructure and loss of life. Lastly, to leverage all the benefits of smart vehicles in smart cities, we would need to accept exorbitant levels of data collection and surveillance, which, in the absence of ironclad privacy protections, could lead to total lack of privacy.</div><div>In this work, we define the automotive context—i.e., smart vehicles—within the larger context of smart cities as our threat landscape. Then, we enumerate and describe all of the (1) threats, (2) attack surfaces &amp; targets, (3) areas of concern (indirect vulnerabilities &amp; threats), and (4) impacts of smart vehicles in smart cities. Our objective is to demonstrate that the dangers are real and imminent—in the hope that they will be addressed before an attack on the “smart vehicles in smart cities” paradigm results in loss of life.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100871"},"PeriodicalIF":5.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey on physical layer security for 5G/6G communications over different fading channels: Approaches, challenges, and future directions 不同衰落信道下5G/6G通信物理层安全研究:方法、挑战和未来方向
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-01-31 DOI: 10.1016/j.vehcom.2025.100891
Parmila Devi, Manoranjan Rai Bharti, Dikshant Gautam
{"title":"A survey on physical layer security for 5G/6G communications over different fading channels: Approaches, challenges, and future directions","authors":"Parmila Devi,&nbsp;Manoranjan Rai Bharti,&nbsp;Dikshant Gautam","doi":"10.1016/j.vehcom.2025.100891","DOIUrl":"10.1016/j.vehcom.2025.100891","url":null,"abstract":"<div><div>The surge in wireless network attacks has intensified the focus on physical layer security (PLS) within academia and industry. As PLS provides security solutions by leveraging the randomness of wireless channels without the need for encryption/decryption keys, fading channels play a major role in PLS solutions. This survey aims to understand the effect of fading on PLS for 5G/6G communications by utilizing various PLS techniques such as beamforming, artificial noise injection, cooperative and opportunistic relaying, physical authentication, and intelligent reflective surface-based PLS over various fading channels. Initially, the role of PLS in 5G/6G communications, its fundamentals, and various techniques available for 5G/6G communications are examined. Since PLS for 5G communications has been extensively studied in the literature, we categorize it into two cases, direct and indirect communications, and provide a comprehensive survey on PLS for 5G communications over various fading channels. Thereafter, we survey the PLS for 6G communications over various fading channels, noting that the work available for PLS in 6G communications is limited and in its early stages. Given the increasing attention on artificial intelligence and machine learning (AI/ML) for wireless communications, this survey also explores PLS based on AI/ML techniques over various fading channels. Finally, the survey concludes with observations on challenges and future directions.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100891"},"PeriodicalIF":5.8,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SC-VDTwinAuth: Smart-contract Assisted Handover Authentication Protocol for Vehicular Digital Twin Network SC-VDTwinAuth:基于智能合约的车辆数字孪生网络切换认证协议
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-01-30 DOI: 10.1016/j.vehcom.2025.100890
Deepika Gautam, Garima Thakur, Sunil Prajapat, Pankaj Kumar
{"title":"SC-VDTwinAuth: Smart-contract Assisted Handover Authentication Protocol for Vehicular Digital Twin Network","authors":"Deepika Gautam,&nbsp;Garima Thakur,&nbsp;Sunil Prajapat,&nbsp;Pankaj Kumar","doi":"10.1016/j.vehcom.2025.100890","DOIUrl":"10.1016/j.vehcom.2025.100890","url":null,"abstract":"<div><div>Vehicular digital twin network is partitioned into multiple networks either due to the geographical differences or their accelerating expansion, which necessitates a secure and incessant transition of cross-regional vehicles. Therefore, in this dynamic topology, the handover process for cross-regional vehicles becomes imperative. The literature encompasses an abundance of blockchain-based handover mechanisms, specifically designed for vehicle and the roadside units. Unfortunately, some of these are not feasible for vehicular digital twin networks due to their high computational overhead and susceptibility to security threats. Therefore, this paper presents a handover authentication protocol for the blockchain-based vehicular digital twin networks, leveraging the smart contract. It entirely depends on digital twin, which reduces the burden of the vehicle and enhances the efficiency and security of the handover process. Security strengths and competency against attacks like sybil and impersonation attacks are investigated through a real-or-random oracle model (ROR) and non-mathematical analysis. The operational analysis evaluates the proposed mechanism with pertinent works based on security functionalities, computation, and communication overhead. Moreover, to illustrate suggested smart contract's viability and the reasonable cost of blockchain consumption, it is implemented via the Ethereum test network. Hence, obtained results indicate the relevancy of the mechanism for vehicular digital twin networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100890"},"PeriodicalIF":5.8,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource allocation in unmanned aerial vehicle networks: A review 无人驾驶飞行器网络中的资源分配:综述
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2025-01-29 DOI: 10.1016/j.vehcom.2025.100889
Siva Sai , Sudhanshu Mishra , Vinay Chamola
{"title":"Resource allocation in unmanned aerial vehicle networks: A review","authors":"Siva Sai ,&nbsp;Sudhanshu Mishra ,&nbsp;Vinay Chamola","doi":"10.1016/j.vehcom.2025.100889","DOIUrl":"10.1016/j.vehcom.2025.100889","url":null,"abstract":"<div><div>Currently, resource allocation in Unmanned Aerial Vehicles (UAVs) is a major topic of discussion among industrialists and researchers. Considering the different emerging applications of UAVs, if the resource allocation problem is not addressed effectively, the upcoming UAV applications will not serve their proposed purpose. Although there are numerous and diverse research works addressing the resource allocation in UAVs, there is an evident lack of a comprehensive survey describing and analyzing the existing methods. Addressing this research gap, we present an extensive review of the resource allocation in UAVs. In this work, we classify the existing research works based on four criteria - optimization goal-based classification, mathematical model-based classification, game theory framework-based classification, and machine learning model-based classification. Our findings revealed that the mathematical models are relatively more explored to solve the resource allocation problem in UAVs. Researchers have explored a variety of game theory techniques, like the Stackelberg model, mean-field game theory, cooperative games, etc., for optimized resource allocation in UAVs. The optimization of energy and throughput factors is more seen in the literature compared to the other optimization goals. We also observed that the reinforcement learning technique is a heavily exploited technique for resource allocation in UAVs compared to all other machine learning-based methods. We have also presented several challenges and future works in the field of resource allocation in UAVs.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"52 ","pages":"Article 100889"},"PeriodicalIF":5.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信