{"title":"5G NR sidelink time domain based resource allocation in C-V2X","authors":"Mehnaz Tabassum, Aurenice Oliveira","doi":"10.1016/j.vehcom.2025.100902","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the need for efficient resource allocation in fifth generation (5G) New Radio (NR) sidelink communication for cellular vehicle-to-everything (C-V2X) applications. With the advent of 5G networks, C-V2X can enable direct connection between neighboring vehicles and infrastructure without relying on the cellular network. However, direct communication between devices in 5G NR sidelink makes resource allocation more challenging than in a cellular network. Efficient resource allocation is essential to maintain dependable communication, especially in crowded and interference-prone contexts. There are different type of resource allocation methods such as time-domain, frequency-domain, and power-domain resource allocation, which can be used separately or in combination to achieve efficient resource allocation. In this study, the authors discuss time domain based resource allocation method based on packet generation time and packet allocation time. The implications of efficient resource allocation in 5G NR sidelink in C-V2X include increased signal-to-noise ratio, reduced interference, lower latency, and increased network capacity. The proposed approach is demonstrated on a Network Simulator (NS3.34) along with the traffic scenarios generated using Simulated Urban Mobility (SUMO). Our results demonstrate that time allocation is a promising approach to achieve efficient resource allocation, enabling safer and more effective transportation systems for C-V2X applications.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100902"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000294","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the need for efficient resource allocation in fifth generation (5G) New Radio (NR) sidelink communication for cellular vehicle-to-everything (C-V2X) applications. With the advent of 5G networks, C-V2X can enable direct connection between neighboring vehicles and infrastructure without relying on the cellular network. However, direct communication between devices in 5G NR sidelink makes resource allocation more challenging than in a cellular network. Efficient resource allocation is essential to maintain dependable communication, especially in crowded and interference-prone contexts. There are different type of resource allocation methods such as time-domain, frequency-domain, and power-domain resource allocation, which can be used separately or in combination to achieve efficient resource allocation. In this study, the authors discuss time domain based resource allocation method based on packet generation time and packet allocation time. The implications of efficient resource allocation in 5G NR sidelink in C-V2X include increased signal-to-noise ratio, reduced interference, lower latency, and increased network capacity. The proposed approach is demonstrated on a Network Simulator (NS3.34) along with the traffic scenarios generated using Simulated Urban Mobility (SUMO). Our results demonstrate that time allocation is a promising approach to achieve efficient resource allocation, enabling safer and more effective transportation systems for C-V2X applications.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.