Ima Fungus最新文献

筛选
英文 中文
Species diversity of Pseudoplagiostoma and Pyrispora (Diaporthales) from Fagaceae hosts in China. Species中国壳斗科寄主Pseudoplagiostoma和Pyrispora (Diaporthales)的多样性。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.153782
Ning Jiang, Han Xue, Yong Li
{"title":"Species diversity of <i>Pseudoplagiostoma</i> and <i>Pyrispora</i> (<i>Diaporthales</i>) from <i>Fagaceae</i> hosts in China.","authors":"Ning Jiang, Han Xue, Yong Li","doi":"10.3897/imafungus.16.153782","DOIUrl":"https://doi.org/10.3897/imafungus.16.153782","url":null,"abstract":"<p><p><i>Diaporthales</i> is an important fungal order comprising plant-associated pathogens, endophytes, and saprobes in commercial crops and forest trees. Over the past decades, utilizing multiple gene phylogeny has substantially advanced our understanding of taxonomic relationships within this order, leading to the recognition of 35 morphologically and molecularly well-supported families. Among these, Pseudoplagiostoma (Pseudoplagiostomataceae) and Pyrispora (Pyrisporaceae) form two phylogenetically closely related lineages that exhibit distinct morphological characteristics. In this study, we conducted comprehensive morphological and phylogenetic analyses of fungal specimens associated with <i>Fagaceae</i> hosts and proposed four new species and two new combinations: <i>Ps.fagaceaearum</i> <b>sp. nov.</b>, <i>Ps.neocastanopsidis</i> <b>sp. nov.</b>, <i>Ps.quercus</i> <b>sp. nov.</b>, <i>Py.humilis</i> <b>comb. nov.</b>, <i>Py.myracrodruonis</i> <b>comb. nov.</b>, and <i>Py.quercicola</i> <b>sp. nov.</b> Furthermore, based on detailed morphological comparisons and molecular evidence, we synonymized <i>Neoplagiostoma</i> with <i>Pyrispora</i>, <i>Ps.castaneae</i> and <i>N.castaneae</i> with <i>Py.castaneae</i>, <i>Ps.ilicis</i> with <i>Ps.wuyishanense</i> and <i>Ps.diaoluoshanense</i> with <i>Ps.mangiferae</i>. This study provides substantial morphological and molecular data that significantly contribute to our understanding of <i>Pseudoplagiostomataceae</i> and <i>Pyrisporaceae</i>, thereby establishing a robust foundation for future taxonomic revisions and systematic investigations within <i>Diaporthales</i>. The findings not only expand our knowledge of fungal diversity associated with <i>Fagaceae</i> but also enhance our comprehension of evolutionary relationships within these important fungal families.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e153782"},"PeriodicalIF":5.2,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential predictive value of phylogenetic novelties in clinical fungi, illustrated by Histoplasma. Potential临床真菌系统发育新颖性的预测价值,由组织浆体说明。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.145658
Yu Quan, Xin Zhou, Ricardo Belmonte-Lopes, Na Li, Retno Wahyuningsih, Anuradha Chowdhary, David L Hawksworth, J Benjamin Stielow, Thomas J Walsh, Sean Zhang, Marcus de Melo Teixeira, Daniel Matute, Sybren de Hoog, Dong Wu
{"title":"Potential predictive value of phylogenetic novelties in clinical fungi, illustrated by <i>Histoplasma</i>.","authors":"Yu Quan, Xin Zhou, Ricardo Belmonte-Lopes, Na Li, Retno Wahyuningsih, Anuradha Chowdhary, David L Hawksworth, J Benjamin Stielow, Thomas J Walsh, Sean Zhang, Marcus de Melo Teixeira, Daniel Matute, Sybren de Hoog, Dong Wu","doi":"10.3897/imafungus.16.145658","DOIUrl":"https://doi.org/10.3897/imafungus.16.145658","url":null,"abstract":"<p><p>The phylogeny of the vertebrate pathogen <i>Histoplasmacapsulatum</i> and its varieties was analyzed on the basis of GenBank data, comparing preceding papers that distinguished lineages on the basis of a much smaller dataset, partly dating back two decades. The aim was to establish the predictive value of individual research papers on biodiversity, which eventually may lead to altered nomenclature with large clinical consequences. A total of 1985 sequences of ITS, ARF, OLE and H-anti were downloaded. ITS showed insufficient resolution, and the sequences of the H-anti gene were too short to provide reliable conclusions. Ten major lineages from the seven reports were selected for comparison. Compared to the currently available global data, several earlier studies applied somewhat skewed datasets, biased towards the Americas. Possible separation of Indian and Indonesian lineages were consequently overlooked. Previously distinguished lineages were again recognized, but because of low bootstrap values and extensive genetic exchange, several of these do not deserve species status. No recombination was observed with North American <i>H.mississippiense</i> and <i>H.ohiense</i>. An African clade (var. duboisii) was individualized. Despite its position in close association with South American clades, histopathology and clinical course of this entity underlines that it has other evolutionary drivers. This might also hold true for the North African donkey disease caused by var. farciminosum, although strains analyzed thus far are indistinguishable from South American strains. On the basis of phylogenetic data, Indian and Indonesian clades are separate, but more clinical data are needed to establish their value as individual species.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e145658"},"PeriodicalIF":5.2,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current use of holy mushrooms of the genus Psilocybe in a Zapotec community in Oaxaca, Mexico. Current在墨西哥瓦哈卡萨波特克社区使用裸盖菇属的圣蘑菇。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.148070
Mara Ximena Haro-Luna, Felipe Ruan-Soto, Virginia Ramírez-Cruz, Julieta Amaya-Pérez, Laura Guzmán-Dávalos
{"title":"Current use of holy mushrooms of the genus <i>Psilocybe</i> in a Zapotec community in Oaxaca, Mexico.","authors":"Mara Ximena Haro-Luna, Felipe Ruan-Soto, Virginia Ramírez-Cruz, Julieta Amaya-Pérez, Laura Guzmán-Dávalos","doi":"10.3897/imafungus.16.148070","DOIUrl":"https://doi.org/10.3897/imafungus.16.148070","url":null,"abstract":"<p><p>The use of psychoactive <i>Psilocybe</i> mushrooms as entheogens by the Mazatecs of Oaxaca became known to the world in 1957. While the Mazatec Region has been the focus of research, historical records indicate that other indigenous groups in Mexico, including the Zapotecs, also used these mushrooms for ceremonial and medicinal purposes. However, the linguistic, cultural and ecological diversity of the Zapotec people suggests that their practices cannot be generalised. In contemporary times, changes in cultural and environmental factors, as well as the rise of psychedelic tourism, have contributed to the transformation and commodification of these traditions. The purpose of this paper was to document the changes in the use, customs and knowledge of <i>Psilocybe</i> species in a Zapotec community in the Valles Centrales of Oaxaca. Through informal in-depth interviews, 30 people from the community of El Peral, San Antonino El Alto were interviewed. These testimonies were recorded in a field diary and entered into a database for categorical analysis. In this way, it was possible to document that the use of <i>Psilocybezapotecorum</i>, called Hongo Borracho or Hongo Santo and in Zapotec Ni'to be'ya, for healing and divinatory purposes, continues in the community. However, its use is decreasing and the mushrooms are more difficult to find, likely due to changing climatic patterns, according to those interviewed. We found that there are still people dedicated to the sale of these mushrooms. For the Zapotecs of El Peral, these mushrooms can do whatever is asked of them according to a ritual, but they are aware that outsiders used them for recreational purposes, although they did not oppose it. This study underscores the importance of documenting and understanding cultural practices related to mushrooms, as well as the need to address environmental challenges that affect their availability and traditional use. Finally, this is the first formal record of the use of <i>Psilocybe</i> mushrooms amongst Zapotecs of the Valles Centrales Region in Oaxaca.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e148070"},"PeriodicalIF":5.2,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptic host-associated differentiation and diversity: unravelling the evolutionary dynamics of the plant pathogen Lasiodiplodia. Cryptic寄主相关的分化和多样性:揭示植物病原体Lasiodiplodia的进化动力学。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.147543
Ya-Zhu Ko, Huei-Chuan Shih, Meng-Shin Shiao, Yu-Chung Chiang
{"title":"Cryptic host-associated differentiation and diversity: unravelling the evolutionary dynamics of the plant pathogen <i>Lasiodiplodia</i>.","authors":"Ya-Zhu Ko, Huei-Chuan Shih, Meng-Shin Shiao, Yu-Chung Chiang","doi":"10.3897/imafungus.16.147543","DOIUrl":"https://doi.org/10.3897/imafungus.16.147543","url":null,"abstract":"<p><p><i>Lasiodiplodia</i>, a genus within the <i>Botryosphaeriaceae</i> family, comprises significant plant pathogens with a broad host range and global distribution, posing a substantial threat to agricultural production. Our recent study revealed the complexity of this genus by identifying numerous potential cryptic species within the seemingly generalist <i>L.theobromae</i>. To fully understand this species' complexity, higher-resolution genetic markers are required. Therefore, this study employed a comprehensive analysis of multiple transferable microsatellite markers to verify <i>Lasiodiplodia</i> species delimitation and examine the fine-scale genetic structure and diversity of <i>Lasiodiplodia</i> species, particularly <i>L.theobromae</i>. The study identified four distinct genetic groups within <i>L.theobromae</i>, each showing high genetic diversity. The phylogenetic relationships of these groups align with the evolutionary history of their host plants. This finding suggests that host-pathogen co-evolution is shaped by shared ancestral variation, limited gene flow, isolation and natural selection. These insights enhance our understanding of managing economically important <i>Lasiodiplodia</i> plant pathogens and highlight the significance of genetic diversity and host preferences in developing effective control measures.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e147543"},"PeriodicalIF":5.2,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid assembly of Penicilliumrubens genomes unveils high conservation of genome structural organisation and the presence of Numts in nuclear DNA. Hybrid青霉菌基因组的组装揭示了基因组结构组织的高度保守性和核DNA中Numts的存在。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.145175
Elena Requena, Javier Veloso, Eduardo A Espeso, Inmaculada Larena
{"title":"Hybrid assembly of <i>Penicilliumrubens</i> genomes unveils high conservation of genome structural organisation and the presence of Numts in nuclear DNA.","authors":"Elena Requena, Javier Veloso, Eduardo A Espeso, Inmaculada Larena","doi":"10.3897/imafungus.16.145175","DOIUrl":"https://doi.org/10.3897/imafungus.16.145175","url":null,"abstract":"<p><p>The search for highly accurate chromosomal reference genomes has become a primary objective for the fungal research communities. Various genomic events, including insertions, deletions, inversions and movement of transposable elements, can modify the genomic architecture, resulting in chromosomal rearrangements. Long sequence reads enhance the accuracy and reliability of the assembly procedure, facilitating the study of these genomic characteristics. Here, we have utilised a combination of PacBio and Illumina sequencing technologies to generate hybrid assemblies of <i>Penicilliumrubens</i> strains 212 (PO212) and S27. These assemblies were then subjected to a comparative analysis in order to elucidate the chromosomal rearrangements that underpin the observed genomic differences, with a particular focus on their implications in the biocontrol phenotype against phytopathogenic fungi. This approach has enabled us to obtain the assembly of both PO212 and S27 genomes, with each organised into 13 scaffolds. The genomic organisation between these two isolates is highly conserved and the presence of transposable elements between the strains does not reveal major differences. Using the hybrid assemblies, we were able to detect, for the first time in the genus <i>Penicillium</i>, the presence of two nuclear mitochondrial DNA segments (Numts) in the genomes of the PO212 and S27 strains. The differences in biocontrol phenotype displayed by PO212 and S27 strains are independent of their genome organisation. These genomes provide new information for the existing database repositories.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e145175"},"PeriodicalIF":5.2,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144200849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-genome based phylogeny and comparative genomics of Sporidiobolales and related taxa of Basidiomycetes. 基于Whole-genome的孢子菌及担子菌相关分类群的系统发育与比较基因组学研究。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-13 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.141626
Yuuki Kobayashi, Naoto Tanaka, Minenosuke Matsutani, Yuuna Kurokawa, Keita Aoki, Moriya Ohkuma, Ri-Ichiroh Manabe, Masako Takashima
{"title":"Whole-genome based phylogeny and comparative genomics of Sporidiobolales and related taxa of <i>Basidiomycetes</i>.","authors":"Yuuki Kobayashi, Naoto Tanaka, Minenosuke Matsutani, Yuuna Kurokawa, Keita Aoki, Moriya Ohkuma, Ri-Ichiroh Manabe, Masako Takashima","doi":"10.3897/imafungus.16.141626","DOIUrl":"10.3897/imafungus.16.141626","url":null,"abstract":"<p><p><i>Sporidiobolales</i> is a fungal order of <i>Basidiomycota</i> within the subphylum Pucciniomycotina. This order encompasses significant yeasts, such as the oleaginous species <i>Rhodotorulatoruloides</i> and the opportunistic pathogen <i>R.mucilaginosa</i>. We present the sequencing and comparative analysis of 35 <i>Sporidiobolales</i> strains from 27 species, alongside a <i>Leucosporidium</i> strain (<i>Leucosporidiales</i>), and incorporating publicly available genomic data for related fungi. Based on the phylogenomics data, we found that the topologies obtained were relatively similar and in line with previous reports. A comparison between genomic makeup and previously described phenotypes revealed that the ability to utilize nitrate, raffinose, rhamnose, or sucrose clearly correlated with the existence of key enzymes involved in the corresponding metabolic pathways. However, similar associations could not be established for other carbon sources, such as maltose, galactose, or xylose. We further identified orthologs that are specifically present or absent in each taxon. These results and the genomic sequencing data will help in gaining a better understanding of these non-model yeast species.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e141626"},"PeriodicalIF":5.2,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144121482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics insights into growth and fruiting body development in the entomopathogenic fungus Cordycepsblackwelliae. Multi-omics昆虫病原真菌虫草的生长和子实体发育的见解。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-05-07 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.147558
Jia-Ni Li, Shu Zhang, Yong-Jie Zhang
{"title":"Multi-omics insights into growth and fruiting body development in the entomopathogenic fungus <i>Cordycepsblackwelliae</i>.","authors":"Jia-Ni Li, Shu Zhang, Yong-Jie Zhang","doi":"10.3897/imafungus.16.147558","DOIUrl":"https://doi.org/10.3897/imafungus.16.147558","url":null,"abstract":"<p><p><i>Cordycepsblackwelliae</i> is an entomopathogenic fungus with significant potential for research and development due to its ease of cultivation. However, the lack of omics-based studies has limited our understanding of the molecular mechanisms governing its growth and fruiting body development. This study employed a multi-omics approach, integrating genomic, transcriptomic and metabolomic analyses. Utilising both Illumina and Nanopore sequencing technologies, we assembled a 31.06 Mb nuclear genome comprising 11 scaffolds, with telomere presence at one or both ends in eight scaffolds and annotated 8,138 identified genes (8,136 from genome prediction and two from local BLAST searches). Transcriptomic analysis identified 2,078 differentially expressed genes across three developmental stages: liquid culture mycelia, wheat culture mycelia and fruiting bodies. Amongst these, 745 genes were up-regulated in fruiting bodies, primarily associated with biosynthetic and catabolic pathways. Metabolomic analysis identified 1,161 metabolites, with 1,014 showing significant variations across developmental stages. Integrated transcriptomic and metabolomic analyses uncovered 17 genes positively correlated with 34 metabolites, which are likely crucial regulators of fruiting body development. These findings provide new insights into the molecular networks underlying <i>C.blackwelliae</i> growth and fruiting body formation.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e147558"},"PeriodicalIF":5.2,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent altitudinal patterns of arbuscular and ectomycorrhizal fungal communities in a mid-subtropical mountain ecosystem. Divergent中亚热带山地生态系统丛枝和外生菌根真菌群落的海拔格局。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-04-03 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.e140187
Taotao Wei, Huiguang Zhang, Shunfen Wang, Chunping Wu, Tieyao Tu, Yonglong Wang, Xin Qian
{"title":"Divergent altitudinal patterns of arbuscular and ectomycorrhizal fungal communities in a mid-subtropical mountain ecosystem.","authors":"Taotao Wei, Huiguang Zhang, Shunfen Wang, Chunping Wu, Tieyao Tu, Yonglong Wang, Xin Qian","doi":"10.3897/imafungus.16.e140187","DOIUrl":"https://doi.org/10.3897/imafungus.16.e140187","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) form ubiquitous symbiotic relationships with plants through co-evolutionary processes, providing multiple benefits for plant growth, productivity, health, and stress mitigation. Mountain ecosystem multifunctionality is significantly influenced by mycorrhizal responses to climate change, highlighting the importance of understanding the complex interactions between these fungi and environmental variables. In this study, we investigated five vegetation zones across an altitudinal gradient (675-2157 m a.s.l.) in Wuyi Mountain, one of the most well-preserved mid-subtropical mountain ecosystems in eastern China. Using high-throughput sequencing, we examined the altitudinal distribution patterns, community assembly mechanisms, and network interactions of soil AMF and EMF. Our analyses demonstrated significant altitudinal variations in the composition and diversity of mycorrhizal fungal communities. AMF richness peaked in the subalpine dwarf forest at intermediate elevations, whereas EMF richness was highest in the low-altitude evergreen broad-leaved forest, showing a marked decrease in the alpine meadow ecosystem. β-diversity decomposition revealed that species turnover constituted the primary mechanism of community differentiation for both fungal types, explaining >56% of the observed variation. Stochastic processes dominated community assembly, with the relative importance of dispersal limitation and drift showing distinct altitudinal patterns. Network analysis indicated that AMF networks reached maximum complexity in evergreen broad-leaved forests, while EMF networks showed similar complexity levels in coniferous forests. Among the examined factors, soil properties emerged as the predominant driver of altitudinal variations in ecosystem multifunctionality, followed by AMF communities and climatic variables. These findings provide critical insights into the ecological functions and environmental adaptations of mycorrhizal fungi, advancing our understanding of their responses to environmental changes in mountain ecosystems and informing evidence-based conservation strategies.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e140187"},"PeriodicalIF":5.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144006151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An attempt of DNA barcodes based geographical origin authentication of the Chinese caterpillar fungus, Ophiocordycepssinensis. An基于DNA条形码的冬虫夏草产地鉴定的尝试。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-03-31 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.144783
Yi Li, Jiao-Jiao Lu, Ya-Bin An, Lan Jiang, Hai-Jun Wu, Ke Wang, Dorji Phurbu, Jinmei Luobu, Chao Ma, Rui-Heng Yang, Cai-Hong Dong, Yi-Jian Yao
{"title":"An attempt of DNA barcodes based geographical origin authentication of the Chinese caterpillar fungus, <i>Ophiocordycepssinensis</i>.","authors":"Yi Li, Jiao-Jiao Lu, Ya-Bin An, Lan Jiang, Hai-Jun Wu, Ke Wang, Dorji Phurbu, Jinmei Luobu, Chao Ma, Rui-Heng Yang, Cai-Hong Dong, Yi-Jian Yao","doi":"10.3897/imafungus.16.144783","DOIUrl":"10.3897/imafungus.16.144783","url":null,"abstract":"<p><p><i>Ophiocordycepssinensis</i> is one of the best-known traditional Chinese medicines with distribution confined to the Tibetan Plateau and its surrounding regions. Harvesting the fungus contributes greatly to the livelihood of local communities. The quality and price varies amongst different production regions, usually resulting in an intentional mix-up of its production locality during trading processes, which leads to a demand of developing a reliable way that can trace the geographical origin of this fungus. In the present study, a DNA barcoding-based method applying two universal DNA barcodes for identifying fungal and insect, respectively i.e. the nuclear ribosomal internal transcribed spacer (ITS) and the mitochondrial cytochrome oxidase I (COI), was evaluated and used for geographical origin authentication of <i>O.sinensis</i>. A total of 24 ITS and 78 COI haplotypes were recognised from 215 individuals collected from 75 different geographic localities (county level). Ninety-nine haplotypes were defined using the combination of ITS and COI, discriminating the 75 investigated production counties into 99 distinct regions. A \"core\" production region was recognised which covers areas of Nagqu and Qamdo in Xizang, Yushu and Guoluo in Qinghai, Gannan (Maqu and Xiahe) in Gansu and certain regions in Nyingch (Bomi and Zayü) and Lhasa (Damxung) in Xizang and Garzê (Sêrxü) in Sichuan Province. Haplotype analyses using the combined barcodes of ITS and COI showed an excellent performance in the geographical origin authentication of <i>O.sinensis</i> and the definition of \"core\" and \"non-core\" production region.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e144783"},"PeriodicalIF":5.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionizing radiation resilience: how metabolically active lichens endure exposure to the simulated Mars atmosphere. Ionizing辐射复原力:代谢活跃的地衣如何忍受暴露在模拟的火星大气中。
IF 5.2 1区 生物学
Ima Fungus Pub Date : 2025-03-31 eCollection Date: 2025-01-01 DOI: 10.3897/imafungus.16.145477
Kaja Skubała, Karolina Chowaniec, Mirosław Kowaliński, Tomasz Mrozek, Jarosław Bąkała, Ewa Latkowska, Beata Myśliwa-Kurdziel
{"title":"Ionizing radiation resilience: how metabolically active lichens endure exposure to the simulated Mars atmosphere.","authors":"Kaja Skubała, Karolina Chowaniec, Mirosław Kowaliński, Tomasz Mrozek, Jarosław Bąkała, Ewa Latkowska, Beata Myśliwa-Kurdziel","doi":"10.3897/imafungus.16.145477","DOIUrl":"10.3897/imafungus.16.145477","url":null,"abstract":"<p><p>To deepen our understanding of lichen adaptation and their potential to colonize extraterrestrial environments, we aimed to identify physiological/biochemical responses of selected lichen species in a metabolically active state to simulated Mars-like conditions in the dark including exposure to X-rays. Our study is the first to demonstrate that the metabolism of the fungal partner in lichen symbiosis was active while being in a Mars-like environment. <i>Diploschistesmuscorum</i> was able to activate defense mechanisms effectively. In contrast, increased oxidative stress and associated damage were not effectively balanced in <i>C.aculeata</i>, which does not support the melanin's radioprotective function in this species. The heavy crystalline deposit on <i>D.muscorum</i> thallus might offer protection enhancing lichen resistance to extreme conditions. We concluded that metabolically active <i>D.muscorum</i> can withstand the X-ray dose expected on the Mars surface over one year of strong solar activity. Consequently, X-rays associated with solar flares and SEPs reaching Mars should not affect the potential habitability of lichens on this planet.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e145477"},"PeriodicalIF":5.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信