Ima FungusPub Date : 2025-03-31eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.144783
Yi Li, Jiao-Jiao Lu, Ya-Bin An, Lan Jiang, Hai-Jun Wu, Ke Wang, Dorji Phurbu, Jinmei Luobu, Chao Ma, Rui-Heng Yang, Cai-Hong Dong, Yi-Jian Yao
{"title":"An attempt of DNA barcodes based geographical origin authentication of the Chinese caterpillar fungus, <i>Ophiocordycepssinensis</i>.","authors":"Yi Li, Jiao-Jiao Lu, Ya-Bin An, Lan Jiang, Hai-Jun Wu, Ke Wang, Dorji Phurbu, Jinmei Luobu, Chao Ma, Rui-Heng Yang, Cai-Hong Dong, Yi-Jian Yao","doi":"10.3897/imafungus.16.144783","DOIUrl":"https://doi.org/10.3897/imafungus.16.144783","url":null,"abstract":"<p><p><i>Ophiocordycepssinensis</i> is one of the best-known traditional Chinese medicines with distribution confined to the Tibetan Plateau and its surrounding regions. Harvesting the fungus contributes greatly to the livelihood of local communities. The quality and price varies amongst different production regions, usually resulting in an intentional mix-up of its production locality during trading processes, which leads to a demand of developing a reliable way that can trace the geographical origin of this fungus. In the present study, a DNA barcoding-based method applying two universal DNA barcodes for identifying fungal and insect, respectively i.e. the nuclear ribosomal internal transcribed spacer (ITS) and the mitochondrial cytochrome oxidase I (COI), was evaluated and used for geographical origin authentication of <i>O.sinensis</i>. A total of 24 ITS and 78 COI haplotypes were recognised from 215 individuals collected from 75 different geographic localities (county level). Ninety-nine haplotypes were defined using the combination of ITS and COI, discriminating the 75 investigated production counties into 99 distinct regions. A \"core\" production region was recognised which covers areas of Nagqu and Qamdo in Xizang, Yushu and Guoluo in Qinghai, Gannan (Maqu and Xiahe) in Gansu and certain regions in Nyingch (Bomi and Zayü) and Lhasa (Damxung) in Xizang and Garzê (Sêrxü) in Sichuan Province. Haplotype analyses using the combined barcodes of ITS and COI showed an excellent performance in the geographical origin authentication of <i>O.sinensis</i> and the definition of \"core\" and \"non-core\" production region.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e144783"},"PeriodicalIF":5.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ionizing radiation resilience: how metabolically active lichens endure exposure to the simulated Mars atmosphere.","authors":"Kaja Skubała, Karolina Chowaniec, Mirosław Kowaliński, Tomasz Mrozek, Jarosław Bąkała, Ewa Latkowska, Beata Myśliwa-Kurdziel","doi":"10.3897/imafungus.16.145477","DOIUrl":"https://doi.org/10.3897/imafungus.16.145477","url":null,"abstract":"<p><p>To deepen our understanding of lichen adaptation and their potential to colonize extraterrestrial environments, we aimed to identify physiological/biochemical responses of selected lichen species in a metabolically active state to simulated Mars-like conditions in the dark including exposure to X-rays. Our study is the first to demonstrate that the metabolism of the fungal partner in lichen symbiosis was active while being in a Mars-like environment. <i>Diploschistesmuscorum</i> was able to activate defense mechanisms effectively. In contrast, increased oxidative stress and associated damage were not effectively balanced in <i>C.aculeata</i>, which does not support the melanin's radioprotective function in this species. The heavy crystalline deposit on <i>D.muscorum</i> thallus might offer protection enhancing lichen resistance to extreme conditions. We concluded that metabolically active <i>D.muscorum</i> can withstand the X-ray dose expected on the Mars surface over one year of strong solar activity. Consequently, X-rays associated with solar flares and SEPs reaching Mars should not affect the potential habitability of lichens on this planet.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e145477"},"PeriodicalIF":5.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11976309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Suillusbovinus</i> sesquiterpenes stimulate root growth and ramification of host and non-host plants by coordinating plant auxin signaling pathways.","authors":"Wanyan Feng, Xueguang Sun, Guiyun Yuan, Guijie Ding","doi":"10.3897/imafungus.16.142356","DOIUrl":"10.3897/imafungus.16.142356","url":null,"abstract":"<p><p>Prior to physical contact, ectomycorrhizal (ECM) fungi can regulate plant root growth and ramification by emitting volatile organic compounds (VOCs). However, the underlying mechanisms of these VOC effects, as well as the key signaling molecules within the VOC blends, are largely unknown. Under sterile conditions, we studied the effects of the <i>Suillusbovinus</i>VOCs on the root growth of <i>Pinusmassoniana</i> or <i>Arabidopsisthaliana</i> before physical contact. Exogenously added auxin inhibitors and auxin-related mutants were used to explore the role of auxin in the promotion of plant root development by <i>S.bovinus</i>VOCs. <i>S.bovinus</i>VOCs stimulated host <i>P.massoniana</i> and non-host <i>A.thaliana</i> lateral root formation (LRF). Although these effects were independent of the host, they exhibited a symbiotic fungal-specific feature. Sesquiterpenes (SQTs) were the main <i>S.bovinus</i> VOC component that promoted LRF in plants. Two SQTs, α-humulene and β-cedrene, utilized different auxin pathways to promote plant root growth but did not affect the formation of an ECM symbiotic relationship between <i>P.massoniana</i> and <i>S.bovinus</i>. These findings enhance our understanding of the role played by SQTs in the signal recognition mechanism during the ECM presymbiotic stage and their role in promoting plant growth.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e142356"},"PeriodicalIF":5.2,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-21eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.e142219
Mary K Childress, Nicholas B Dragone, Benjamin D Young, Byron J Adams, Noah Fierer, C Alisha Quandt
{"title":"Three new <i>Pseudogymnoascus</i> species (<i>Pseudeurotiaceae</i>, <i>Thelebolales</i>) described from Antarctic soils.","authors":"Mary K Childress, Nicholas B Dragone, Benjamin D Young, Byron J Adams, Noah Fierer, C Alisha Quandt","doi":"10.3897/imafungus.16.e142219","DOIUrl":"10.3897/imafungus.16.e142219","url":null,"abstract":"<p><p>The genus <i>Pseudogymnoascus</i> includes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species of <i>Pseudogymnoascus</i>-<i>P.russus</i> <b>sp. nov.</b>, <i>P.irelandiae</i> <b>sp. nov.</b>, and <i>P.ramosus</i> <b>sp. nov.</b>-isolated from Antarctic soils. These species represent the first <i>Pseudogymnoascus</i> taxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades: <i>P.irelandiae</i> in clade K, <i>P.ramosus</i> in clade Q, and <i>P.russus</i> in clade B. These results provide further evidence of the extensive undescribed diversity of <i>Pseudogymnoascus</i> in high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e142219"},"PeriodicalIF":5.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-21eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.144989
Nazir Ahmed, Juan Li, Yongquan Li, Lifang Deng, Lansheng Deng, Muzafaruddin Chachar, Zaid Chachar, Sadaruddin Chachar, Faisal Hayat, Ahmed Raza, Javed Hussain Umrani, Lin Gong, Panfeng Tu
{"title":"Symbiotic synergy: How Arbuscular Mycorrhizal Fungi enhance nutrient uptake, stress tolerance, and soil health through molecular mechanisms and hormonal regulation.","authors":"Nazir Ahmed, Juan Li, Yongquan Li, Lifang Deng, Lansheng Deng, Muzafaruddin Chachar, Zaid Chachar, Sadaruddin Chachar, Faisal Hayat, Ahmed Raza, Javed Hussain Umrani, Lin Gong, Panfeng Tu","doi":"10.3897/imafungus.16.144989","DOIUrl":"10.3897/imafungus.16.144989","url":null,"abstract":"<p><p>Arbuscular Mycorrhizal (AM) symbiosis is integral to sustainable agriculture and enhances plant resilience to abiotic and biotic stressors. Through their symbiotic association with plant roots, AM improves nutrient and water uptake, activates antioxidant defenses, and facilitates hormonal regulation, contributing to improved plant health and productivity. Plants release strigolactones, which trigger AM spore germination and hyphal branching, a process regulated by genes, such as <i>D27</i>, <i>CCD7</i>, <i>CCD8</i>, and <i>MAX1</i>. AM recognition by plants is mediated by receptor-like kinases (RLKs) and LysM domains, leading to the formation of arbuscules that optimize nutrient exchange. Hormonal regulation plays a pivotal role in this symbiosis; cytokinins enhance AM colonization, auxins support arbuscule formation, and brassinosteroids regulate root growth. Other hormones, such as salicylic acid, gibberellins, ethylene, jasmonic acid, and abscisic acid, also influence AM colonization and stress responses, further bolstering plant resilience. In addition to plant health, AM enhances soil health by improving microbial diversity, soil structure, nutrient cycling, and carbon sequestration. This symbiosis supports soil pH regulation and pathogen suppression, offering a sustainable alternative to chemical fertilizers and improving soil fertility. To maximize AM 's potential of AM in agriculture, future research should focus on refining inoculation strategies, enhancing compatibility with different crops, and assessing the long-term ecological and economic benefits. Optimizing AM applications is critical for improving agricultural resilience, food security, and sustainable farming practices.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e144989"},"PeriodicalIF":5.2,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-13eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.144994
Alfredo Vizzini, Giovanni Consiglio, Katarína Adamčíková, Ledo Setti, Slavomír Adamčík
{"title":"<i>Pseudobaeosporoideae</i>, a new subfamily within the <i>Tricholomataceae</i> for the genus <i>Pseudobaeospora</i> (<i>Agaricales</i>, <i>Tricholomatineae</i>) based on morphological and molecular inference.","authors":"Alfredo Vizzini, Giovanni Consiglio, Katarína Adamčíková, Ledo Setti, Slavomír Adamčík","doi":"10.3897/imafungus.16.144994","DOIUrl":"10.3897/imafungus.16.144994","url":null,"abstract":"<p><p>Based on molecular and morphological evidence the new subfamily <i>Pseudobaeosporoideae</i> of the <i>Tricholomataceae</i> is established within the <i>Tricholomatineae</i> for accommodating the unique features of <i>Pseudobaeospora</i> such as gymnocarpic mycenoid/collybioid habit, small-sized spores with thick and dextrinoid wall, and presence of crassobasidia. Twenty-six <i>Pseudobaeospora</i> collections corresponding to eleven species (five types) were newly sequenced. Collections morphologically attributable to <i>P.oligophylla</i> (type of the genus) or to <i>P.pillodii</i> are here sequenced for the first time: accordingly, <i>P.oligophylla</i> is considered as a posterior synonym of <i>P.pillodii</i>. Quélet's original plate is selected as a lectotype for <i>Collybiapillodii</i> and a French collection as its epitype collection. <i>Pseudobaeosporadeceptiva</i> is described as a new species from Italy very close to <i>P.pillodii</i> from which it differs mainly by bigger spores and SSU and LSU rDNA sequences. The presence of <i>P.pyrifera</i> in Italy is documented for the first time and <i>P.mutabilis</i> is reduced to its later synonym. A neotype is established for <i>P.jamonii</i> which is here proved to be an independent species. Finally, a critical review of the characters used for interspecific distinctions in <i>Pseudobaeospora</i> was provided.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e144994"},"PeriodicalIF":5.2,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-10eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.144874
Li Lu, Samantha C Karunarathna, Kunhiraman C Rajeshkumar, Abdallah M Elgorban, Ruvishika S Jayawardena, Sinang Hongsanan, Nakarin Suwannarach, Jaturong Kumla, Yin-Ru Xiong, Kevin D Hyde, Mei-Yan Han, De-Ge Zheng, Qiang Li, Dong-Qin Dai, Saowaluck Tibpromma
{"title":"Unveiling fungal diversity associated with coffee trees in China using a polyphasic approach and a global review of coffee saprobic fungi.","authors":"Li Lu, Samantha C Karunarathna, Kunhiraman C Rajeshkumar, Abdallah M Elgorban, Ruvishika S Jayawardena, Sinang Hongsanan, Nakarin Suwannarach, Jaturong Kumla, Yin-Ru Xiong, Kevin D Hyde, Mei-Yan Han, De-Ge Zheng, Qiang Li, Dong-Qin Dai, Saowaluck Tibpromma","doi":"10.3897/imafungus.16.144874","DOIUrl":"10.3897/imafungus.16.144874","url":null,"abstract":"<p><p>Arabica coffee (<i>Coffeaarabica</i>) is the most cultured and popular coffee bean in today's world. Yunnan Province is well known as China's largest arabica coffee cultivation region. Fungi represent an important group of microorganisms associated with coffee, profoundly influencing its yield and quality. In this study, twelve fungal collections growing on dead and decaying twigs of coffee were collected and isolated to systematically document microfungi associated with coffee plants in Yunnan Province. Ten novel species, each representing a unique family within <i>Pleosporales</i>, were identified and introduced, based on comprehensive morphological analyses and multigene phylogenetic studies. The ten new species belong to the families <i>Bambusicolaceae</i>, <i>Didymellaceae</i>, <i>Didymosphaeriaceae</i>, <i>Longiostiolaceae</i>, <i>Lophiostomataceae</i>, <i>Massarinaceae</i>, <i>Neomassariaceae</i>, <i>Occultibambusaceae</i>, <i>Roussoellaceae</i> and <i>Thyridariaceae</i> with each family containing one new species. Macro- and micro-characteristics, descriptions and phylogenetic trees indicating the placement of the new taxa are provided. In addition, pairwise homoplasy index (PHI) test results and morphological comparisons between the new species and closely-related taxa are given. This study also establishes a comprehensive global inventory of saprobic fungi associated with coffee, which is intended to help researchers and professionals worldwide with practical information. This research enhances the understanding of coffee-associated fungal diversity in China and underscores the importance of introducing new saprobic fungal taxa related to coffee.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e144874"},"PeriodicalIF":5.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143659701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-07eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.142462
Hedda Schrey, Christopher Lambert, Marc Stadler
{"title":"<i>Fungi</i>: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry.","authors":"Hedda Schrey, Christopher Lambert, Marc Stadler","doi":"10.3897/imafungus.16.142462","DOIUrl":"https://doi.org/10.3897/imafungus.16.142462","url":null,"abstract":"<p><p>Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e142462"},"PeriodicalIF":5.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-07eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.143240
Ningning Yang, Xiaoliang Shan, Kexuan Wang, Junkun Lu, Ying Zhu, Redman S Regina, Russell J Rodriguez, Jiajia Yao, Francis M Martin, Zhilin Yuan
{"title":"A fusarioid fungus forms mutualistic interactions with poplar trees that resemble ectomycorrhizal symbiosis.","authors":"Ningning Yang, Xiaoliang Shan, Kexuan Wang, Junkun Lu, Ying Zhu, Redman S Regina, Russell J Rodriguez, Jiajia Yao, Francis M Martin, Zhilin Yuan","doi":"10.3897/imafungus.16.143240","DOIUrl":"https://doi.org/10.3897/imafungus.16.143240","url":null,"abstract":"<p><p><i>Fusarium</i> species, recognised as global priority pathogens, frequently induce severe diseases in crops; however, certain species exhibit alternative symbiotic lifestyles and are either non-pathogenic or endophytic. In this study, we characterised the mutualistic relationship between the eFp isolate of <i>F.pseudograminearum</i> and five poplar species, resulting in formation root structures reminiscent of ectomycorrhizal (ECM) symbiosis. This functional symbiosis is evidenced by enhanced plant growth, reciprocal nutrient exchange, improved nitrogen and phosphorus uptake and upregulation of root sugar transporter gene expression (<i>PtSweet1</i>). Comparative and population genomics confirmed that eFp maintains a structurally similar genome, but exhibits significant divergence from ten conspecific pathogenic isolates. Notably, eFp enhanced the growth of diverse plant lineages (<i>Oryza</i>, <i>Arabidopsis</i>, <i>Pinus</i> and non-vascular liverworts), indicating a near-complete loss of virulence. Although this specialised symbiosis has only been established <i>in vitro</i>, it holds significant value in elucidating the evolutionary track from endophytic to mycorrhizal associations.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e143240"},"PeriodicalIF":5.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ima FungusPub Date : 2025-03-07eCollection Date: 2025-01-01DOI: 10.3897/imafungus.16.145422
Ning Jiang, Han Xue, Yong Li
{"title":"Novel genus and species of <i>Diaporthostomataceae</i> (<i>Diaporthales</i>) in China.","authors":"Ning Jiang, Han Xue, Yong Li","doi":"10.3897/imafungus.16.145422","DOIUrl":"https://doi.org/10.3897/imafungus.16.145422","url":null,"abstract":"<p><p><i>Diaporthales</i> is a significant fungal order comprising species that predominantly inhabit plant tissues, being pathogens, endophytes, and saprobes. Recent studies have uncovered extensive species diversity across various hosts, utilizing both morphological characteristics and molecular phylogenetic analyses. In this study, samples of leaf spots and branch cankers were collected from China, and fungal isolations were established. Species identification was conducted using a phylogenetic approach based on combined sequence data from the internal transcribed spacer (ITS) region, large subunit ribosomal DNA (LSU), the DNA-directed RNA polymerase II second largest subunit (<i>rpb2</i>), and translation elongation factor 1-alpha (<i>tef1</i>) genes, together with morphological observations. As a result, the novel genus <i>Tiania</i> is proposed, with three newly described species: <i>T.chinensis</i>, <i>T.lithocarpicola</i>, and <i>T.quercicola</i>. These species are validated by pairwise homoplasy index (PHI) analysis, ensuring robust support for their distinction. This study explores the rare family <i>Diaporthostomataceae</i>, providing the first descriptions of their anamorphic forms. By offering detailed morphological and molecular data, this research lays a foundation for future taxonomic and systematic studies of the <i>Diaporthales</i>.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e145422"},"PeriodicalIF":5.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}