Drought stress responses revealed by genomic and transcriptomic analyses of two macrofungi (Inonotus hispidus and Inocutis levis) from Populus euphratica.
Miao Zhou, Meng-Xue Lv, Dong-Mei Wu, Neng Gao, Tai-Min Xu, Yi-Fei Sun, Bao-Kai Cui
{"title":"Drought stress responses revealed by genomic and transcriptomic analyses of two macrofungi (<i>Inonotus hispidus</i> and <i>Inocutis levis</i>) from <i>Populus euphratica</i>.","authors":"Miao Zhou, Meng-Xue Lv, Dong-Mei Wu, Neng Gao, Tai-Min Xu, Yi-Fei Sun, Bao-Kai Cui","doi":"10.3897/imafungus.16.163859","DOIUrl":null,"url":null,"abstract":"<p><p><i>Populus euphratica</i> is a key deciduous and tall arbour capable of forming forests in arid and desert environments, exhibiting notable tolerance to drought, salinity and bacterial resistance. This study completed whole-genome sequencing of <i>Inonotus hispidus</i> and <i>Inocutis levis</i>, collected from Xinjiang, China, to predict genome structure and identify potential drought-related genes. Combined with transcriptome sequencing under different drought conditions simulated using PEG-6000, the gene expression regulation during drought tolerance was analysed. Whole-genome sequencing was carried out on the Illumina Novaseq and Pacbio Sequel platforms, resulting in genome size of 34.57 Mb for <i>Inonotus hispidus</i> and 37.17 Mb for <i>Inocutis levis</i>, respectively. A total of 10,169 and 10,140 protein-coding genes were annotated in these two species. The genomes of two species exhibited high synteny with 7,226 shared homologous genes and their functional annotations showed high similarity. Under drought stress at three PEG-6000 concentrations (10%, 30% and 50%), the transcriptomic analyses revealed 4,550 and 2,113 differentially expressed genes (DEGs) in the two fungi, respectively, with an increasing number of up- and down-regulated genes as the drought stress intensified. Gene expression profiles in response to drought stress showed prominent changes, amongst which the genes related to antioxidation, osmotic regulation, signal transduction and ribosomal function may play important roles. In the ribosome pathway, <i>Inonotus hispidus</i> showed a significant down-regulation of ribosomal-related genes under mild drought stress, which is up-regulated once again as the stress intensifies, while <i>Inocutis levis</i> exhibited significant up-regulation of these genes under severe drought stress, highlighting distinct drought adaptation strategies. This study provides essential theoretical insights into the molecular adaptation mechanisms of fungi in dry environments and offers new perspectives for the development of microbial resources in arid regions.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"16 ","pages":"e163859"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/imafungus.16.163859","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Populus euphratica is a key deciduous and tall arbour capable of forming forests in arid and desert environments, exhibiting notable tolerance to drought, salinity and bacterial resistance. This study completed whole-genome sequencing of Inonotus hispidus and Inocutis levis, collected from Xinjiang, China, to predict genome structure and identify potential drought-related genes. Combined with transcriptome sequencing under different drought conditions simulated using PEG-6000, the gene expression regulation during drought tolerance was analysed. Whole-genome sequencing was carried out on the Illumina Novaseq and Pacbio Sequel platforms, resulting in genome size of 34.57 Mb for Inonotus hispidus and 37.17 Mb for Inocutis levis, respectively. A total of 10,169 and 10,140 protein-coding genes were annotated in these two species. The genomes of two species exhibited high synteny with 7,226 shared homologous genes and their functional annotations showed high similarity. Under drought stress at three PEG-6000 concentrations (10%, 30% and 50%), the transcriptomic analyses revealed 4,550 and 2,113 differentially expressed genes (DEGs) in the two fungi, respectively, with an increasing number of up- and down-regulated genes as the drought stress intensified. Gene expression profiles in response to drought stress showed prominent changes, amongst which the genes related to antioxidation, osmotic regulation, signal transduction and ribosomal function may play important roles. In the ribosome pathway, Inonotus hispidus showed a significant down-regulation of ribosomal-related genes under mild drought stress, which is up-regulated once again as the stress intensifies, while Inocutis levis exhibited significant up-regulation of these genes under severe drought stress, highlighting distinct drought adaptation strategies. This study provides essential theoretical insights into the molecular adaptation mechanisms of fungi in dry environments and offers new perspectives for the development of microbial resources in arid regions.
Ima FungusAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍:
The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue