Sarah C Hurt, Steven Q Le, Shih-Hsin Kan, Quang D Bui, Michael D Brodt, Patricia I Dickson
{"title":"Antibodies to recombinant human alpha-L-iduronidase prevent disease correction in cortical bone in MPS I mice.","authors":"Sarah C Hurt, Steven Q Le, Shih-Hsin Kan, Quang D Bui, Michael D Brodt, Patricia I Dickson","doi":"10.1016/j.omtm.2024.101405","DOIUrl":"10.1016/j.omtm.2024.101405","url":null,"abstract":"<p><p>Mucopolysaccharidosis I (MPS I) is a lysosomal storage disorder caused by deficiency of the enzyme α-l-iduronidase (IDUA). Failure of enzyme replacement therapy (ERT) to treat skeletal disease may be due to development of anti-IDUA antibodies, found previously to alter tissue distribution of ERT in animal models. To test this hypothesis, immunocompromised (non-obese diabetic [NOD]-severe combined immunodeficiency [SCID]) MPS I mice were treated with weekly ERT from birth (ERT alone). Some mice also received weekly injections of rabbit immunoglobulin G (IgG) against IDUA (immunized rabbit immune globulin [IRIG]) concomitant with ERT, imitating antibodies developed in patients (ERT+IRIG). Mice treated with ERT+IRIG showed lower IDUA activity and higher disease burden than mice treated with ERT alone in most tissues. Femora were harvested at 20 weeks for <i>ex vivo</i> microcomputed tomography (μCT). Femoral cortical bone thickness and cortical bone area in MPS I mice were greater than in unaffected mice. Mice treated with ERT alone had values that were statistically indistinguishable from carrier mice, while mice that received ERT+IRIG had no significant differences compared to vehicle-treated MPS I mice. The data suggests that immune-modulatory or immune-suppressive therapy to prevent or reduce the humoral immune response against ERT may improve treatment of skeletal disease due to MPS I.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101405"},"PeriodicalIF":4.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.","authors":"Brian J Parrett, Satoko Yamaoka, Michael A Barry","doi":"10.1016/j.omtm.2024.101402","DOIUrl":"10.1016/j.omtm.2024.101402","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression. We inserted one to five miR-122 binding sites into the 5' or 3' untranslated regions (UTRs) of luciferase mRNAs and tested them in LNPs <i>in vitro</i> and <i>in vivo</i> via systemic intravenous and local intramuscular injections in mice. Our results showed no significant differences in de-targeting efficacy between mRNAs harboring one or multiple miR-122 binding sites or between those with 5' or 3' UTR placements. To test the impact of miR-122 binding sites on antibody response to a mRNA vaccine, Ebola virus matrix protein VP40 mRNAs were modified with or without miR-122 binding sites and injected in mice intramuscularly. This work reinforces the utility of miR-122 binding sites while providing a comparison of these sites to aid the future development of LNP-mRNA therapies for non-hepatic tissues.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101402"},"PeriodicalIF":4.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diane Berry, Kate Donigan, Lisa Kahlman, James Long, Christina Markus, Caitlin K McCombs
{"title":"Optimizing regulatory frameworks for gene therapies in rare diseases: Challenges and solutions.","authors":"Diane Berry, Kate Donigan, Lisa Kahlman, James Long, Christina Markus, Caitlin K McCombs","doi":"10.1016/j.omtm.2024.101386","DOIUrl":"10.1016/j.omtm.2024.101386","url":null,"abstract":"<p><p>The advent of genetic medicines and advanced diagnostics has revolutionized the treatment landscape for rare diseases and, with over 10,000 identified conditions affecting millions globally, has the potential to improve many lives. Despite this progress, only 5% of rare diseases have FDA-approved therapies, highlighting a significant unmet need. This article examines the critical need for optimizing the regulatory environment to support the development and approval of gene therapies for rare and ultrarare diseases, which often face unique challenges due to their complexity in the midst of a rapidly evolving field. Key issues discussed include the mismatch between traditional regulatory paradigms and the nature of gene therapies, the need for innovative clinical trial designs, and the importance of flexible manufacturing processes. The article proposes targeted reforms to align regulatory frameworks with the needs of patients with rare diseases and the pace of science, emphasizing the value of a holistic evidence approach, platform technologies, and iterative manufacturing evaluations. By addressing these challenges, we can accelerate the development of life-changing therapies in order to realize the opportunity to provide treatments to patients with rare genetic disorders in their lifetime.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101386"},"PeriodicalIF":4.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sri Hari Raju Mulagapati, Arun Parupudi, Tomasz Witkos, Nick Bond, Xiaoyu Chen, Thomas Linke, Guoling Xi, Albert Ethan Schmelzer, Wei Xu
{"title":"Size-exclusion chromatography as a multi-attribute method for process and product characterization of adeno-associated virus.","authors":"Sri Hari Raju Mulagapati, Arun Parupudi, Tomasz Witkos, Nick Bond, Xiaoyu Chen, Thomas Linke, Guoling Xi, Albert Ethan Schmelzer, Wei Xu","doi":"10.1016/j.omtm.2024.101382","DOIUrl":"10.1016/j.omtm.2024.101382","url":null,"abstract":"<p><p>Adeno-associated viruses (AAVs) have recently emerged as a leading platform for gene therapy. Due to the complex manufacturing process and structural features of AAVs, extensive process and product characterization studies are required to better understand product quality and batch-to-batch variability. It is, therefore, critical to develop a fast and reliable analytical method to monitor different product quality attributes (PQAs) of AAVs. In this study, we developed a multiple-attribute monitoring (MAM) method for the characterization of AAV PQAs. The MAM method was developed using the separation capability of size-exclusion chromatography (SEC) in connection with multiple in-line detectors: ultraviolet (UV), fluorescence (FLD), multi-angle light scattering (MALS), and refractive index (RI). We demonstrate that our SEC-based MAM method can be used to measure different PQAs, including genome and capsid titer, purity, aggregation, and full/empty capsid ratios in a single assay. Our SEC-based MAM method achieves similar results when compared side by side with orthogonal, individual assays such as quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and anion-exchange chromatography (AEX). Moreover, here we demonstrate that a simple, label-free, cost-effective, minimum sample requirement, and a high-throughput method can be applied to support process development, product characterization, release, and stability testing.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101382"},"PeriodicalIF":4.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142839257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua Tworig, Francis Grafton, Kaylin Fisher, Markus Hörer, Christopher A Reid, Mohammad A Mandegar
{"title":"Transcriptomics-informed pharmacology identifies epigenetic and cell cycle regulators that enhance AAV production.","authors":"Joshua Tworig, Francis Grafton, Kaylin Fisher, Markus Hörer, Christopher A Reid, Mohammad A Mandegar","doi":"10.1016/j.omtm.2024.101384","DOIUrl":"10.1016/j.omtm.2024.101384","url":null,"abstract":"<p><p>Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101384"},"PeriodicalIF":4.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142839660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative proteomic analysis of residual host cell protein retention across adeno-associated virus affinity chromatography.","authors":"Thomas M Leibiger, Lie Min, Kelvin H Lee","doi":"10.1016/j.omtm.2024.101383","DOIUrl":"10.1016/j.omtm.2024.101383","url":null,"abstract":"<p><p>To better understand host cell protein (HCP) retention in adeno-associated virus (AAV) downstream processes, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was used to quantitatively profile residual HCPs for four AAV serotypes (AAV2, -5, -8, and -9) produced with HEK293 cells and purified using POROS CaptureSelect AAVX affinity chromatography. A broad range of residual HCPs were detected in affinity eluates after purification (<i>N</i> <sub><i>total</i></sub> = 2,746), and HCP profiles showed universally present species (<i>N</i> <sub><i>universal</i></sub> = 1,117) and species unique to one or more AAV serotype. SWATH-MS revealed that HCP persistence was dominated by high-abundance conserved species (HACS), which appeared across all serotype conditions studied. Due to the notable contribution of these species to overall residual HCP levels, physical and functional characteristics of HACS were examined to determine trends that coincide with persistence. Subnetwork interaction mapping and Gene Ontology function enrichment analysis revealed extensive physical interactions between these proteins and significant enrichment for biological processes, molecular functions, and reactome pathways related to protein folding, nucleic acid binding, and cellular stress. The abundant and conserved nature of these HCPs and their functions offers a new perspective for mechanistic evaluations of impurity retention for AAV downstream processes.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101383"},"PeriodicalIF":4.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Russell W Cochrane, Rob A Robino, Bryan Granger, Eva Allen, Silvia Vaena, Martin J Romeo, Aguirre A de Cubas, Stefano Berto, Leonardo M R Ferreira
{"title":"High-affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells.","authors":"Russell W Cochrane, Rob A Robino, Bryan Granger, Eva Allen, Silvia Vaena, Martin J Romeo, Aguirre A de Cubas, Stefano Berto, Leonardo M R Ferreira","doi":"10.1016/j.omtm.2024.101385","DOIUrl":"10.1016/j.omtm.2024.101385","url":null,"abstract":"<p><p>Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28-activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3<sup>+</sup> CAR Tregs uniquely acquiring CD40L surface expression and producing IFN-γ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101385"},"PeriodicalIF":4.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hareth A Al-Wassiti, Stewart A Fabb, Samantha L Grimley, Ruby Kochappan, Joan K Ho, Chinn Yi Wong, Chee Wah Tan, Thomas J Payne, Asuka Takanashi, Chee Leng Lee, Rekha Shandre Mugan, Horatio Sicilia, Serena L Y Teo, Julie McAuley, Paula Ellenberg, James P Cooney, Kathryn C Davidson, Richard Bowen, Marc Pellegrini, Steven Rockman, Dale I Godfrey, Terry M Nolan, Lin-Fa Wang, Georgia Deliyannis, Damian F J Purcell, Colin W Pouton
{"title":"mRNA vaccines encoding membrane-anchored RBDs of SARS-CoV-2 mutants induce strong humoral responses and can overcome immune imprinting.","authors":"Hareth A Al-Wassiti, Stewart A Fabb, Samantha L Grimley, Ruby Kochappan, Joan K Ho, Chinn Yi Wong, Chee Wah Tan, Thomas J Payne, Asuka Takanashi, Chee Leng Lee, Rekha Shandre Mugan, Horatio Sicilia, Serena L Y Teo, Julie McAuley, Paula Ellenberg, James P Cooney, Kathryn C Davidson, Richard Bowen, Marc Pellegrini, Steven Rockman, Dale I Godfrey, Terry M Nolan, Lin-Fa Wang, Georgia Deliyannis, Damian F J Purcell, Colin W Pouton","doi":"10.1016/j.omtm.2024.101380","DOIUrl":"10.1016/j.omtm.2024.101380","url":null,"abstract":"<p><p>We investigated mRNA vaccines encoding a membrane-anchored receptor-binding domain (RBD), each a fusion of a variant RBD, the transmembrane (TM) and cytoplasmic tail fragments of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In naive mice, RBD-TM mRNA vaccines against SARS-CoV-2 variants induced strong humoral responses against the target RBD. Multiplex surrogate viral neutralization (sVNT) assays revealed broad neutralizing activity against a range of variant RBDs. In the setting of a heterologous boost, against the background of exposure to ancestral whole-spike vaccines, sVNT studies suggested that BA.1 and BA.5 RBD-TM vaccines had the potential to overcome the detrimental effects of immune imprinting. A subsequent heterologous boost study using XBB.1.5 booster vaccines was evaluated using both sVNT and authentic virus neutralization. Geometric mean XBB.1.5 neutralization values after third-dose RBD-TM or whole-spike XBB.1.5 booster vaccines were compared with those after a third dose of ancestral spike booster vaccine. Fold-improvement over ancestral vaccine was just 1.3 for the whole-spike XBB.1.5 vaccine, similar to data published using human serum samples. In contrast, the fold-improvement achieved by the RBD-TM XBB.1.5 vaccine was 16.3, indicating that the RBD-TM vaccine induced the production of antibodies that neutralize the XBB.1.5 variant despite previous exposure to ancestral spike protein.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101380"},"PeriodicalIF":4.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}