Johannes Lengler, Markus Weiller, Franziska Horling, Josef Mayrhofer, Maria Schuster, Falko G Falkner, Irene Gil-Farina, Matthias Klugmann, Friedrich Scheiflinger, Werner Hoellriegl, Hanspeter Rottensteiner
{"title":"Preclinical development of TAK-754, a high-performance AAV8-based vector expressing coagulation factor VIII.","authors":"Johannes Lengler, Markus Weiller, Franziska Horling, Josef Mayrhofer, Maria Schuster, Falko G Falkner, Irene Gil-Farina, Matthias Klugmann, Friedrich Scheiflinger, Werner Hoellriegl, Hanspeter Rottensteiner","doi":"10.1016/j.omtm.2025.101424","DOIUrl":null,"url":null,"abstract":"<p><p>This report concerns the preclinical development of TAK-754, an AAV8-based human factor VIII (FVIII) vector designed to deliver a codon-optimized and CpG-depleted B domain-deleted <i>F8</i> transgene under the control of a liver-specific promoter for gene therapy in patients with hemophilia A. A dose-dependent increase in plasma FVIII activity was detected in FVIII knockout mice at a dose of 1.0 × 10<sup>12</sup> TAK-754 capsid particles (CP)/kg or higher. This increase was shown to be in accordance with a dose-dependent decrease in blood loss in a hemostatic efficacy assay. TAK-754 (3.1 × 10<sup>12</sup> CP/kg) mediated long-term and stable FVIII expression in immunologically tolerant transgenic human FVIII mice. Toxicology and biodistribution assessments with a single administration of TAK-754 ranging between 1.9 × 10<sup>12</sup> and 5.0 × 10<sup>13</sup> CP/kg were conducted in male C57BL/6J mice. The highest TAK-754 dose occurred without TAK-754-related adverse clinical signs. Biodistribution profiling showed predominant detection in the liver with a low occurrence of vector DNA in other tissues. Integration site analysis revealed minimal vector integration, with no observations of clonal outgrowth or preferred integrations in genes previously implicated in hepatocellular carcinoma formation within the observation period. These preclinical studies demonstrate a good safety and efficacy profile for TAK-754.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101424"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929063/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101424","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This report concerns the preclinical development of TAK-754, an AAV8-based human factor VIII (FVIII) vector designed to deliver a codon-optimized and CpG-depleted B domain-deleted F8 transgene under the control of a liver-specific promoter for gene therapy in patients with hemophilia A. A dose-dependent increase in plasma FVIII activity was detected in FVIII knockout mice at a dose of 1.0 × 1012 TAK-754 capsid particles (CP)/kg or higher. This increase was shown to be in accordance with a dose-dependent decrease in blood loss in a hemostatic efficacy assay. TAK-754 (3.1 × 1012 CP/kg) mediated long-term and stable FVIII expression in immunologically tolerant transgenic human FVIII mice. Toxicology and biodistribution assessments with a single administration of TAK-754 ranging between 1.9 × 1012 and 5.0 × 1013 CP/kg were conducted in male C57BL/6J mice. The highest TAK-754 dose occurred without TAK-754-related adverse clinical signs. Biodistribution profiling showed predominant detection in the liver with a low occurrence of vector DNA in other tissues. Integration site analysis revealed minimal vector integration, with no observations of clonal outgrowth or preferred integrations in genes previously implicated in hepatocellular carcinoma formation within the observation period. These preclinical studies demonstrate a good safety and efficacy profile for TAK-754.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.