Sri Hari Raju Mulagapati, Arun Parupudi, Tomasz Witkos, Nick Bond, Xiaoyu Chen, Thomas Linke, Guoling Xi, Albert Ethan Schmelzer, Wei Xu
{"title":"Size-exclusion chromatography as a multi-attribute method for process and product characterization of adeno-associated virus.","authors":"Sri Hari Raju Mulagapati, Arun Parupudi, Tomasz Witkos, Nick Bond, Xiaoyu Chen, Thomas Linke, Guoling Xi, Albert Ethan Schmelzer, Wei Xu","doi":"10.1016/j.omtm.2024.101382","DOIUrl":null,"url":null,"abstract":"<p><p>Adeno-associated viruses (AAVs) have recently emerged as a leading platform for gene therapy. Due to the complex manufacturing process and structural features of AAVs, extensive process and product characterization studies are required to better understand product quality and batch-to-batch variability. It is, therefore, critical to develop a fast and reliable analytical method to monitor different product quality attributes (PQAs) of AAVs. In this study, we developed a multiple-attribute monitoring (MAM) method for the characterization of AAV PQAs. The MAM method was developed using the separation capability of size-exclusion chromatography (SEC) in connection with multiple in-line detectors: ultraviolet (UV), fluorescence (FLD), multi-angle light scattering (MALS), and refractive index (RI). We demonstrate that our SEC-based MAM method can be used to measure different PQAs, including genome and capsid titer, purity, aggregation, and full/empty capsid ratios in a single assay. Our SEC-based MAM method achieves similar results when compared side by side with orthogonal, individual assays such as quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and anion-exchange chromatography (AEX). Moreover, here we demonstrate that a simple, label-free, cost-effective, minimum sample requirement, and a high-throughput method can be applied to support process development, product characterization, release, and stability testing.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101382"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101382","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adeno-associated viruses (AAVs) have recently emerged as a leading platform for gene therapy. Due to the complex manufacturing process and structural features of AAVs, extensive process and product characterization studies are required to better understand product quality and batch-to-batch variability. It is, therefore, critical to develop a fast and reliable analytical method to monitor different product quality attributes (PQAs) of AAVs. In this study, we developed a multiple-attribute monitoring (MAM) method for the characterization of AAV PQAs. The MAM method was developed using the separation capability of size-exclusion chromatography (SEC) in connection with multiple in-line detectors: ultraviolet (UV), fluorescence (FLD), multi-angle light scattering (MALS), and refractive index (RI). We demonstrate that our SEC-based MAM method can be used to measure different PQAs, including genome and capsid titer, purity, aggregation, and full/empty capsid ratios in a single assay. Our SEC-based MAM method achieves similar results when compared side by side with orthogonal, individual assays such as quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and anion-exchange chromatography (AEX). Moreover, here we demonstrate that a simple, label-free, cost-effective, minimum sample requirement, and a high-throughput method can be applied to support process development, product characterization, release, and stability testing.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.