Matter and Radiation at Extremes最新文献

筛选
英文 中文
A novel rapid cooling assembly design in a high-pressure cubic press apparatus 高压立方体压机中的新型快速冷却组件设计
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-26 DOI: 10.1063/5.0176025
Peiyan Wu, Yongjiang Xu, Yanhao Lin
{"title":"A novel rapid cooling assembly design in a high-pressure cubic press apparatus","authors":"Peiyan Wu, Yongjiang Xu, Yanhao Lin","doi":"10.1063/5.0176025","DOIUrl":"https://doi.org/10.1063/5.0176025","url":null,"abstract":"In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures. This limits the efficiency of cooling of samples at the end of experiments, with a negative impact on many studies in high-pressure Earth and planetary science. Inefficient cooling of experiments containing molten phases at high temperature leads to the formation of quench textures, which makes it impossible to quantify key compositional parameters of the original molten phase, such as their volatile contents. Here, we present a new low-cost experimental assembly for rapid cooling in a six-anvil cubic press. This assembly not only retains high heating efficiency and thermal insulation, but also enables a very high cooling rate (∼600 °C/s from 1900 °C to the glass transition temperature). Without using expensive materials or external modification of the press, the cooling rate in an assembly (∼600 °C/s) with cube lengths of 38.5 mm is about ten times faster than that in the traditional assembly (∼60 °C/s). Experiments yielding inhomogeneous quenched melt textures when the traditional assembly is used are shown to yield homogeneous silicate glass without quench textures when the rapid cooling assembly is used.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"47 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides 揭示 LuH2 中的新型金属-金属转变:对镥氢化物中的超导说法提出严峻挑战
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-22 DOI: 10.1063/5.0183701
Dong Wang, Ningning Wang, Caoshun Zhang, Chunsheng Xia, Weicheng Guo, Xia Yin, Kejun Bu, Takeshi Nakagawa, Jianbo Zhang, Federico Gorelli, Philip Dalladay-Simpson, Thomas Meier, Xujie Lü, Liling Sun, Jinguang Cheng, Qiaoshi Zeng, Yang Ding, Ho-kwang Mao
{"title":"Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides","authors":"Dong Wang, Ningning Wang, Caoshun Zhang, Chunsheng Xia, Weicheng Guo, Xia Yin, Kejun Bu, Takeshi Nakagawa, Jianbo Zhang, Federico Gorelli, Philip Dalladay-Simpson, Thomas Meier, Xujie Lü, Liling Sun, Jinguang Cheng, Qiaoshi Zeng, Yang Ding, Ho-kwang Mao","doi":"10.1063/5.0183701","DOIUrl":"https://doi.org/10.1063/5.0183701","url":null,"abstract":"Following the recent report by Dasenbrock-Gammon et al. [Nature 615, 244–250 (2023)] of near-ambient superconductivity in nitrogen-doped lutetium trihydride (LuH3−δNε), significant debate has emerged surrounding the composition and interpretation of the observed sharp resistance drop. Here, we meticulously revisit these claims through comprehensive characterization and investigations. We definitively identify the reported material as lutetium dihydride (LuH2), resolving the ambiguity surrounding its composition. Under similar conditions (270–295 K and 1–2 GPa), we replicate the reported sharp decrease in electrical resistance with a 30% success rate, aligning with the observations by Dasenbrock-Gammon et al. However, our extensive investigations reveal this phenomenon to be a novel pressure-induced metal-to-metal transition intrinsic to LuH2, distinct from superconductivity. Intriguingly, nitrogen doping exerts minimal impact on this transition. Our work not only elucidates the fundamental properties of LuH2 and LuH3, but also critically challenges the notion of superconductivity in these lutetium hydride systems. These findings pave the way for future research on lutetium hydride systems, while emphasizing the crucial importance of rigorous verification in claims of ambient-temperature superconductivity.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"33 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime 在弱非线性状态下通过激光汪场加速产生超高亮度 50 MeV 电子束
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-22 DOI: 10.1063/5.0189460
Zhongtao Xiang, Changhai Yu, Zhiyong Qin, Xuhui Jiao, Jiahui Cheng, Qiaoxuan Zhou, Gatie Axi, Jianghua Jie, Ya Huang, Jintan Cai, Jiansheng Liu
{"title":"Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime","authors":"Zhongtao Xiang, Changhai Yu, Zhiyong Qin, Xuhui Jiao, Jiahui Cheng, Qiaoxuan Zhou, Gatie Axi, Jianghua Jie, Ya Huang, Jintan Cai, Jiansheng Liu","doi":"10.1063/5.0189460","DOIUrl":"https://doi.org/10.1063/5.0189460","url":null,"abstract":"We propose an efficient scheme to produce ultrahigh-brightness tens of MeV electron beams by designing a density-tailored plasma to induce a wakefield in the weakly nonlinear regime with a moderate laser energy of 120 mJ. In this scheme, the second bucket of the wakefield can have a much lower phase velocity at the steep plasma density down-ramp than the first bucket and can be exploited to implement longitudinal electron injection at a lower laser intensity, leading to the generation of bright electron beams with ultralow emittance together with low energy spread. Three-dimensional particle-in-cell simulations are carried out and demonstrate that high-quality electron beams with a peak energy of 50 MeV, ultralow emittance of ∼28 nm rad, energy spread of 1%, charge of 4.4 pC, and short duration less than 5 fs can be obtained within a 1-mm-long tailored plasma density, resulting in an ultrahigh six-dimensional brightness B6D,n of ∼2 × 1017 A/m2/0.1%. By changing the density parameters, tunable bright electron beams with peak energies ranging from 5 to 70 MeV, a small emittance of ≤0.1 mm mrad, and a low energy spread at a few-percent level can be obtained. These bright MeV-class electron beams have a variety of potential applications, for example, as ultrafast electron probes for diffraction and imaging, in laboratory astrophysics, in coherent radiation source generation, and as injectors for GeV particle accelerators.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"205 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies 利用两个不同频率的激光脉冲在等离子体中实现快速高效的光子减速
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-22 DOI: 10.1063/5.0189638
Y. X. Wang, X. L. Zhu, S. M. Weng, P. Li, X. F. Li, H. Ai, H. R. Pan, Z. M. Sheng
{"title":"Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies","authors":"Y. X. Wang, X. L. Zhu, S. M. Weng, P. Li, X. F. Li, H. Ai, H. R. Pan, Z. M. Sheng","doi":"10.1063/5.0189638","DOIUrl":"https://doi.org/10.1063/5.0189638","url":null,"abstract":"The generation of ultrashort high-power light sources in the mid-infrared (mid-IR) to terahertz (THz) range is of interest for applications in a number of fields, from fundamental research to biology and medicine. Besides conventional laser technology, photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses. Here, we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength. The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse. Owing to its relatively long wavelength, the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble. Consequently, the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths. This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"31 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collective coherent emission of electrons in strong laser fields and perspective for hard x-ray lasers 强激光场中电子的集体相干发射和硬 X 射线激光器的前景
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-16 DOI: 10.1063/5.0174508
E. G. Gelfer, A. M. Fedotov, O. Klimo, S. Weber
{"title":"Collective coherent emission of electrons in strong laser fields and perspective for hard x-ray lasers","authors":"E. G. Gelfer, A. M. Fedotov, O. Klimo, S. Weber","doi":"10.1063/5.0174508","DOIUrl":"https://doi.org/10.1063/5.0174508","url":null,"abstract":"Coherent motion of particles in a plasma can imprint itself on radiation. The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions. Under certain conditions, the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime. This perspective paper explains the limitations under which such a regime might be attained.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"31 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith 嫦娥五号留下的高压矿物和新的月球矿物变化石-(Y)
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-11 DOI: 10.1063/5.0148784
Jing Yang, Wei Du
{"title":"High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith","authors":"Jing Yang, Wei Du","doi":"10.1063/5.0148784","DOIUrl":"https://doi.org/10.1063/5.0148784","url":null,"abstract":"Forty-five years after the Apollo and Luna missions, China’s Chang’e-5 (CE-5) mission collected ∼1.73 kg of new lunar materials from one of the youngest basalt units on the Moon. The CE-5 lunar samples provide opportunities to address some key scientific questions related to the Moon, including the discovery of high-pressure silica polymorphs (seifertite and stishovite) and a new lunar mineral, changesite-(Y). Seifertite was found to be coexist with stishovite in a silica fragment from CE-5 lunar regolith. This is the first confirmed seifertite in returned lunar samples. Seifertite has two space group symmetries (Pnc2 and Pbcn) and formed from an α-cristobalite-like phase during “cold” compression during a shock event. The aftershock heating process changes some seifertite to stishovite. Thus, this silica fragment records different stages of an impact process, and the peak shock pressure is estimated to be ∼11 to 40 GPa, which is much lower than the pressure condition for coexistence of seifertite and stishovite on the phase diagram. Changesite-(Y), with ideal formula (Ca8Y)□Fe2+(PO4)7 (where □ denotes a vacancy) is the first new lunar mineral to be discovered in CE-5 regolith samples. This newly identified phosphate mineral is in the form of columnar crystals and was found in CE-5 basalt fragments. It contains high concentrations of Y and rare earth elements (REE), reaching up to ∼14 wt. % (Y,REE)2O3. The occurrence of changesite-(Y) marks the late-stage fractional crystallization processes of CE-5 basalts combined with silicate liquid immiscibility. These new findings demonstrate the significance of studies on high-pressure minerals in lunar materials and the special nature of lunar magmatic evolution.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"91 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density 近临界密度等离子体中电子直接激光加速产生的明亮贝塔电子辐射的特征
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-11 DOI: 10.1063/5.0181119
J. Cikhardt, M. Gyrdymov, S. Zähter, P. Tavana, M. M. Günther, N. Bukharskii, N. Borisenko, J. Jacoby, X. F. Shen, A. Pukhov, N. E. Andreev, O. N. Rosmej
{"title":"Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density","authors":"J. Cikhardt, M. Gyrdymov, S. Zähter, P. Tavana, M. M. Günther, N. Bukharskii, N. Borisenko, J. Jacoby, X. F. Shen, A. Pukhov, N. E. Andreev, O. N. Rosmej","doi":"10.1063/5.0181119","DOIUrl":"https://doi.org/10.1063/5.0181119","url":null,"abstract":"Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativistic laser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In an experiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 1019 W/cm2 laser intensity. The spectrum of directed x-rays in the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0° and 10° to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 1013 photons/sr with energies >5 keV measured at 0° to the laser axis and a brilliance of 1021 photons s−1 mm−2 mrad−2 (0.1%BW)−1. The angular distribution of the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emission time, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laser facilities.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"308 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass 论金属玻璃准各向同性压缩过程中的塑性热力学
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-02-04 DOI: 10.1063/5.0176138
Kaiguo Chen, Bo Chen, Yinan Cui, Yuying Yu, Jidong Yu, Huayun Geng, Dongdong Kang, Jianhua Wu, Yao Shen, Jiayu Dai
{"title":"On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass","authors":"Kaiguo Chen, Bo Chen, Yinan Cui, Yuying Yu, Jidong Yu, Huayun Geng, Dongdong Kang, Jianhua Wu, Yao Shen, Jiayu Dai","doi":"10.1063/5.0176138","DOIUrl":"https://doi.org/10.1063/5.0176138","url":null,"abstract":"Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extreme conditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50 is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physical properties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change are successfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relatively insensitive to the strain rate γ̇ when γ̇ ranges from 7.5 × 108 to 2 × 109/s, which are values reachable in QIC experiments, with a magnitude of the order of 10−2kB/atom per GPa. However, when γ̇ is extremely high (>2×109/s), a notable increase in entropy production rate with γ̇ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated that entropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase in configurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamental relation between microstructure evolution and plastic dissipation.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"93 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography 用点投影硬 X 射线射线摄影诊断间接驱动的双壳目标
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-01-17 DOI: 10.1063/5.0045112
Chao Tian, Minghai Yu, Lianqiang Shan, Fengjuan Wu, Bi Bi, Qiangqiang Zhang, Yuchi Wu, Tiankui Zhang, Feng Zhang, Dongxiao Liu, Weiwu Wang, Zongqiang Yuan, Siqian Yang, Lei Yang, Zhigang Deng, Jian Teng, Weimin Zhou, Zongqing Zhao, Yuqiu Gu, Baohan Zhang
{"title":"Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography","authors":"Chao Tian, Minghai Yu, Lianqiang Shan, Fengjuan Wu, Bi Bi, Qiangqiang Zhang, Yuchi Wu, Tiankui Zhang, Feng Zhang, Dongxiao Liu, Weiwu Wang, Zongqiang Yuan, Siqian Yang, Lei Yang, Zhigang Deng, Jian Teng, Weimin Zhou, Zongqing Zhao, Yuqiu Gu, Baohan Zhang","doi":"10.1063/5.0045112","DOIUrl":"https://doi.org/10.1063/5.0045112","url":null,"abstract":"We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Cone-inserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on the point-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peak compression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metal microwire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamic simulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, areal densities of the targets were evaluated.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"11 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter 将随机密度泛函理论与深电位分子动力学结合起来研究暖致密物质
IF 5.1 1区 物理与天体物理
Matter and Radiation at Extremes Pub Date : 2024-01-08 DOI: 10.1063/5.0163303
Tao Chen, Qianrui Liu, Yu Liu, Liang Sun, Mohan Chen
{"title":"Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter","authors":"Tao Chen, Qianrui Liu, Yu Liu, Liang Sun, Mohan Chen","doi":"10.1063/5.0163303","DOIUrl":"https://doi.org/10.1063/5.0163303","url":null,"abstract":"In traditional finite-temperature Kohn–Sham density functional theory (KSDFT), the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures. However, stochastic density functional theory (SDFT) can overcome this limitation. Recently, SDFT and the related mixed stochastic–deterministic density functional theory, based on a plane-wave basis set, have been implemented in the first-principles electronic structure software ABACUS [Q. Liu and M. Chen, Phys. Rev. B 106, 125132 (2022)]. In this study, we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV. Importantly, we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories. Subsequently, we compute and analyze the structural properties, dynamic properties, and transport coefficients of warm dense matter.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"9 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139412091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信