{"title":"Collective coherent emission of electrons in strong laser fields and perspective for hard x-ray lasers","authors":"E. G. Gelfer, A. M. Fedotov, O. Klimo, S. Weber","doi":"10.1063/5.0174508","DOIUrl":null,"url":null,"abstract":"Coherent motion of particles in a plasma can imprint itself on radiation. The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions. Under certain conditions, the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime. This perspective paper explains the limitations under which such a regime might be attained.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0174508","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent motion of particles in a plasma can imprint itself on radiation. The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions. Under certain conditions, the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime. This perspective paper explains the limitations under which such a regime might be attained.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.