Chem CatalysisPub Date : 2024-09-19DOI: 10.1016/j.checat.2024.101124
Alexandra K. Stephan
{"title":"Catalyzing the future","authors":"Alexandra K. Stephan","doi":"10.1016/j.checat.2024.101124","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101124","url":null,"abstract":"No Abstract","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"30 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2024-09-13DOI: 10.1016/j.checat.2024.101110
Simon De Kreijger, Felix Glaser, Ludovic Troian-Gautier
{"title":"From photons to reactions: key concepts in photoredox catalysis","authors":"Simon De Kreijger, Felix Glaser, Ludovic Troian-Gautier","doi":"10.1016/j.checat.2024.101110","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101110","url":null,"abstract":"<p>Photoredox catalysis has emerged as a powerful tool for organic synthesis, enabling the generation of reactive intermediates under mild reaction conditions. In this review, a special emphasis is placed on key concepts essential to understand and subsequently optimize photoredox catalytic processes. These focus on the formation and deactivation of the excited state and its reactivity. Specifically, the importance of the excited-state lifetime for diffusional quenching, the formation of the encounter complex, and the crucial role of non-covalent interactions in facilitating pre-association between reagents are discussed. Furthermore, excited-state deactivation pathways induced by a quencher are considered, differentiating between energy-transfer and electron-transfer processes. Finally, we address the importance of cage escape yields for the case of electron-transfer quenching and the determination of reaction quantum yield by actinometry measurements. Comprehension of these parameters will enable the development of more efficient and selective photocatalytic processes and open technological locks.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"25 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2024-09-12DOI: 10.1016/j.checat.2024.101109
Xinyue Xie, Shiyin Zhao, Yang Han, Anrong Chen, Bo Yang, Bo Zhu, Yingzi Li, Jun Zhou, Feng Zhu
{"title":"Direct construction of aryl amide N-glycosides from glycosyl oxamic acids via photoredox palladium-catalyzed aminocarbonylations","authors":"Xinyue Xie, Shiyin Zhao, Yang Han, Anrong Chen, Bo Yang, Bo Zhu, Yingzi Li, Jun Zhou, Feng Zhu","doi":"10.1016/j.checat.2024.101109","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101109","url":null,"abstract":"<p>Despite the flourishing synthesis of <em>O</em>-glycosides, progress in <em>N</em>-glycoside synthesis has been impeded by significant challenges due to the weak nucleophilicity of amides. Here, we unveil an interesting photoredox palladium (Pd)-catalyzed aminocarbonylation of glycosyl oxamic acids with (hetero)aryl bromides to synthesize aryl <em>N</em>-amide glycosides. This method employs a merging single- and two-electron strategy for the first time, leveraging glycosyl oxamic acids as traceless carbamoyl radical precursors. By bypassing the elusive anomeric control of C–N glycosidic bond formation between sugars and aglycones, our approach offers a promising alternative for the synthesis of aryl amide <em>N</em>-glycosides. The versatility and applicability of this innovative strategy are demonstrated through a comprehensive examination of 65 examples, encompassing diverse (hetero)aryl electrophiles, saccharides, oligosaccharides, oligopeptides, and complex drug molecules. Mechanistic insights, gleaned from experimental and computational studies, elucidate a successive SET pathway and the generation of carbamoyl radicals in this synergistic catalytic process.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"17 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mutual self-regulation of d electrons of single atoms and adjacent nanoparticles for acetaldehyde manufacture","authors":"Bolin Wang, Yuxue Yue, Fangmin Zuo, Saisai Wang, Zilong Zhang, Yuteng Zhang, Meijun Liu, Haifeng Zhang","doi":"10.1016/j.checat.2024.101108","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101108","url":null,"abstract":"<p>Metal-support interactions in catalysis impose fundamental limitations on maximum activity. Here, we show that the constraint relationship of local electronic and geometric structures of carbon-supported palladium (Pd) catalysts can be broken through the synergy between the Pd-Pd and the Pd-B coupling interaction, producing a class of densely populated entities with unique negatively charged properties. A volcano-shaped curve that depicts the relationship between Pd Bader charge and neighboring atomic distance is established, thereby optimizing catalytic performance. Acetaldehyde manufacture via acetylene hydration is used as our study case. Outstanding performance can be triggered over the densely populated Pd single-atom and nanoparticle co-catalytic sites compared with individual Pd sites. The effect is attributed to the negative charge and high-density effect of Pd-BN<sub>3</sub> sites, which easily adapt their structures to binding C<sub>2</sub>H<sub>2</sub> and H<sub>2</sub>O and varying reaction routes. This approach provides practical insights for the design of Pd-based catalysts comprising well-defined electronic and geometric structures.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"6 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2024-09-06DOI: 10.1016/j.checat.2024.101098
Lars J.C. Jeuken, Dennis G.H. Hetterscheid, Marc T.M. Koper, Carla Casadevall, Christophe Léger, Antoni Llobet, Ross D. Milton, Ryuhei Nakamura, Kristina Tschulik
{"title":"Toward an informative comparison of heterogeneous, synthetic, and biological electrocatalysis in energy conversion","authors":"Lars J.C. Jeuken, Dennis G.H. Hetterscheid, Marc T.M. Koper, Carla Casadevall, Christophe Léger, Antoni Llobet, Ross D. Milton, Ryuhei Nakamura, Kristina Tschulik","doi":"10.1016/j.checat.2024.101098","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101098","url":null,"abstract":"<p>An urgently needed transition toward a sustainable and renewable energy landscape compels an increasing role for electrocatalysis. Distinct classes of electrocatalysts have each shown important benefits in energy conversion and the activation of small molecules such as CO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>, and H<sub>2</sub>: synthetic and biological molecular electrocatalysts and heterogeneous and reticular material electrocatalysts. This perspective seeks to foster knowledge exchange between the scientific communities by comparing these different electrocatalytic systems. The different subdisciplines employ divergent nomenclature, analytical approaches, and definitions of catalytic activity, even in cases of substantial overlap in chemical principles. We propose a set of conditions that must be met to ensure an unbiased comparison. Through sustained efforts to share best practices and harmonize approaches, we anticipate enhanced collaboration among subdisciplines, thereby facilitating innovative thinking and advancing the field of electrocatalysis toward its full potential in contributing to a sustainable and renewable energy future.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"45 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Norrish-Yang-type cyclopropanation via functional group migration with photosensitizer at ppb loading","authors":"Yingru Xu, Jianjian Huang, Tengfei Pang, Guojiao Wu, Fangrui Zhong","doi":"10.1016/j.checat.2024.101099","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101099","url":null,"abstract":"<p>The classic Norrish-Yang cyclization of ketones and their alkene counterparts is a well-known photochemical rearrangement strategy utilized for building cyclobutanes through hydrogen atom transfer. Herein, a noncanonical Norrish-Yang-type rearrangement involving the migration of functional groups, such as cyano and aryl, is established through energy transfer catalysis, facilitating facile assembly of three-membered cyclopropanes. With a focus on reactions translocating a cyano group, this protocol showcases a broad substrate scope (58 entries), operates under mild reaction conditions, and requires an extremely low catalyst loading (100 ppb, 12 h, 97% yield). Impressively, a total turnover number (TTN) of 1.15 × 10<sup>7</sup> was recorded. Mechanistic experiments uncovered a unique fluorescence enhancement phenomenon of photocatalysts, characterized by a linear Stern-Volmer plot with an unusual negative slope. The present Norrish-Yang-type cyclization significantly expands the synthetic repertoire of photochemical rearrangement for preparing distinct ring frameworks.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"6 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2024-09-05DOI: 10.1016/j.checat.2024.101093
Mehdi Zare, Dia Sahsah, Olajide H. Bamidele, Andreas Heyden
{"title":"Polyolefin melt-phase effects on alkane hydrogenolysis over Pt catalysts","authors":"Mehdi Zare, Dia Sahsah, Olajide H. Bamidele, Andreas Heyden","doi":"10.1016/j.checat.2024.101093","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101093","url":null,"abstract":"<p>Supported transition metal-catalyzed chemical upcycling of polyolefins by hydrogenolysis typically occurs in a polymer melt phase at elevated temperatures (T > 200°C). Currently, the impact of the melt phase on the catalytic activity and selectivity of the transition metal is largely unknown. Here, we use a hybrid quantum mechanical/molecular mechanical (QM/MM) approach to investigate the melt-phase effects on the adsorption free energy (<span><span><math><mrow is=\"true\"><msubsup is=\"true\"><mrow is=\"true\"><mo is=\"true\">Δ</mo><mo is=\"true\">Δ</mo><mi is=\"true\">G</mi></mrow><mrow is=\"true\"><mi is=\"true\">A</mi><mi is=\"true\">d</mi><mi is=\"true\">s</mi><mi is=\"true\">o</mi><mi is=\"true\">r</mi><mi is=\"true\">b</mi><mi is=\"true\">a</mi><mi is=\"true\">t</mi><mi is=\"true\">e</mi></mrow><mrow is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">a</mi><mi is=\"true\">s</mi><mo is=\"true\" stretchy=\"true\">→</mo><mi is=\"true\">l</mi><mi is=\"true\">i</mi><mi is=\"true\">q</mi></mrow></msubsup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msubsup is=\"true\"><mrow is=\"true\"><mo is=\"true\">Δ</mo><mo is=\"true\">Δ</mo><mi is=\"true\">G</mi></mrow><mrow is=\"true\"><mi is=\"true\">A</mi><mi is=\"true\">d</mi><mi is=\"true\">s</mi><mi is=\"true\">o</mi><mi is=\"true\">r</mi><mi is=\"true\">b</mi><mi is=\"true\">a</mi><mi is=\"true\">t</mi><mi is=\"true\">e</mi></mrow><mrow is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">a</mi><mi is=\"true\">s</mi><mo stretchy=\"true\" is=\"true\">→</mo><mi is=\"true\">l</mi><mi is=\"true\">i</mi><mi is=\"true\">q</mi></mrow></msubsup></mrow></math></script></span>) of atomic hydrogen, 12 hydrocarbon molecules, and 4 transition states in the hydrogenolysis mechanism of butane on a Pt(111) catalyst surface at 573 K in the presence of a polyethylene surrogate melt consisting of C<sub>36</sub>H<sub>74</sub> chains. The smallest and largest endergonic melt phase effects, <span><span><math><mrow is=\"true\"><msubsup is=\"true\"><mrow is=\"true\"><mo is=\"true\">Δ</mo><mo is=\"true\">Δ</mo><mi is=\"true\">G</mi></mrow><mrow is=\"true\"><mi is=\"true\">A</mi><mi is=\"true\">d</mi><mi is=\"true\">s</mi><mi is=\"true\">o</mi><mi is=\"true\">r</mi><mi is=\"true\">b</mi><mi is=\"true\">a</mi><mi is=\"true\">t</mi><mi is=\"true\">e</mi></mrow><mrow is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">a</mi><mi is=\"true\">s</mi><mo is=\"true\" stretchy=\"true\">→</mo><mi is=\"true\">l</mi><mi is=\"true\">i</mi><mi is=\"true\">q</mi></mrow></msubsup></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msubsup is=\"true\"><mrow is=\"true\"><mo is=\"true\">Δ</mo><mo is=\"true\">Δ</mo><mi is=\"true\">G</mi></mrow><mrow is=\"true\"><mi is=\"true\">A</mi><mi is=\"true\">d</mi><mi is=\"true\">s</mi><mi is=\"true\">o</mi><mi is=\"true\">r</mi><mi is=\"true\">b</mi><mi is=\"true\">a</mi><mi is=\"true\">t</mi><mi is=\"true\">e</mi></mrow><mrow is=\"true\"><mi is=\"true\">g</mi><mi is=\"true\">a</mi><mi is=\"true\">s</mi><mo stretchy=\"true\" is=\"true\">→</mo><mi is=\"true\">l</mi><mi is=\"true\">i</mi><mi is=\"true\">q</mi></mrow></msubsup></mrow></math></script></span>, bel","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"9 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2024-09-05DOI: 10.1016/j.checat.2024.101097
Xiang Li, Likang Zhang, Jun Wang, Zheling Zeng, Ji-Jun Zou, Shuguang Deng, Yiyang Li, Qiang Deng, Shik Chi Edman Tsang
{"title":"Hydrogen spillover accelerates catalytic hydrolysis ring opening of furans to polyols and alkanes","authors":"Xiang Li, Likang Zhang, Jun Wang, Zheling Zeng, Ji-Jun Zou, Shuguang Deng, Yiyang Li, Qiang Deng, Shik Chi Edman Tsang","doi":"10.1016/j.checat.2024.101097","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101097","url":null,"abstract":"<p>Low-temperature specific ring opening of furans to polyols and alkanes could be crucial for synthesizing bioderived polyols and high-performance fuel. Here, we report a new route for controllable semi-hydrogenation of furans to dihydrofurans and hydrolysis ring opening to polyols using surface-oxidized, metal phosphide (CoP-O)-supported, noble-metal nanoparticle catalysts at 150°C. The formed polyols can be widely used as building blocks for polyester, polyurethane, and polyether manufacturing. In addition, alkanes can be generated in high yield through a one-pot reaction by integrating the ring-opening and subsequent dehydration processes after introducing acidic zeolite. The controlled semi-hydrogenation hydrolysis route can be ascribed to a concerted but controlled hydrogenation-acid catalysis via hydrogen spillover from Pt nanoparticles to the CoP-O surface. This system shows its specific ring-opening strategy for various furans, which offers selective synthesis of polyols and alkanes.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"22 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EITLEM-Kinetics: A deep-learning framework for kinetic parameter prediction of mutant enzymes","authors":"Xiaowei Shen, Ziheng Cui, Jianyu Long, Shiding Zhang, Biqiang Chen, Tianwei Tan","doi":"10.1016/j.checat.2024.101094","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101094","url":null,"abstract":"<p>The core issue in implementing <em>in silico</em> enzyme screening lies in accurately evaluating the merits of mutants. The best solution to this problem would undoubtedly be the precise prediction of kinetic parameters for mutant enzymes to directly assess the catalytic efficiency and activity of enzymes. Previously developed models of this type are mostly limited to predictions for wild-type enzymes and tend to exhibit poorer generalization capabilities. Here, a novel deep-learning model framework and an ensemble iterative transfer learning strategy for enzyme mutant kinetics parameter (<em>k</em><sub><em>cat</em></sub>, <em>K</em><sub><em>m</em></sub>, and <em>KK</em><sub><em>m</em></sub>) prediction (EITLEM-Kinetics) were developed. This approach is designed to overcome the limitations imposed by sparse training samples on the model’s predictive performance and accurately predict the kinetic parameters of various mutants. This development is set to provide significant assistance in future endeavors to construct virtual screening methods aimed at enhancing enzyme activity and offer innovative solutions for researchers grappling with similar challenges.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"48 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photothermal catalytic CO2 hydrogenation to methanol on Au/In2O3 nanowires","authors":"Letian Wang, Defu Yao, Chenchen Zhang, Yuzhen Chen, Lilac Amirav, Ziyi Zhong","doi":"10.1016/j.checat.2024.101095","DOIUrl":"https://doi.org/10.1016/j.checat.2024.101095","url":null,"abstract":"<p>Converting CO<sub>2</sub> into energy-rich fuels and high-value chemicals using solar energy is one of the sustainable solutions to mitigate reliance on fossil fuels, yet attaining the required conversion efficiency and selectivity to products such as methanol remains challenging. Here, we present In<sub>2</sub>O<sub>3</sub> nanowires decorated with plasmonic Au nanoparticles with improved activity for photothermal CO<sub>2</sub> hydrogenation to methanol. Under light irradiation, the localized surface plasmon resonance induced by the Au nanoparticles alleviates the thermodynamic constraints of methanol synthesis. This results in a significant increase in methanol production rate (320 μmol·g<sup>−1</sup>·h<sup>−1</sup>) alongside meaningful improvement in methanol selectivity compared with the purely thermal catalytic process. This work provides insights into the benefits of harnessing plasmonic nanoparticles to improve upon thermocatalysis via light utilization.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"42 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}