{"title":"Improved non-uniform subdivision scheme with modified Eigen-polyhedron.","authors":"Jingjing Zhang, Yufeng Tian, Xin Li","doi":"10.1186/s42492-022-00115-2","DOIUrl":"https://doi.org/10.1186/s42492-022-00115-2","url":null,"abstract":"<p><p>In this study, a systematic refinement method was developed for non-uniform Catmull-Clark subdivision surfaces to improve the quality of the surface at extraordinary points (EPs). The developed method modifies the eigenpolyhedron by designing the angles between two adjacent edges that contain an EP. Refinement rules are then formulated with the help of the modified eigenpolyhedron. Numerical experiments show that the method significantly improves the performance of the subdivision surface for non-uniform parameterization.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40596024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curve intersection based on cubic hybrid clipping.","authors":"Yaqiong Wu, Xin Li","doi":"10.1186/s42492-022-00114-3","DOIUrl":"https://doi.org/10.1186/s42492-022-00114-3","url":null,"abstract":"<p><p>This study presents a novel approach to computing all intersections between two Bézier curves using cubic hybrid clipping. Each intersection is represented by two strip intervals that contain an intersection. In each step, one curve is bounded by two fat lines, and the other is bounded by two cubic Bézier curves, clipping away the domain that does not contain the intersections. By selecting the moving control points of the cubic hybrid curves, better cubic polynomial bounds are obtained to make the proposed method more efficient. It was proved that the two strip intervals have second- and fourth-order convergence rates for transversal intersections. Experimental results show that the new algorithm is the most efficient among all existing curve/curve intersection approaches.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40178564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Features of hardware implementation of quasi-continuous observation devices with discrete receivers.","authors":"Oleksandr Maryliv, Mykhailo Slonov","doi":"10.1186/s42492-022-00102-7","DOIUrl":"https://doi.org/10.1186/s42492-022-00102-7","url":null,"abstract":"<p><p>This article proposes an approach to the formalization of tasks and conditions for the hardware implementation of quasi-continuous observation devices with discrete receivers in remote sensing systems. Observation devices with a matrix are used in medicine, ecology, aerospace photography, and geodesy, among other fields. In the discrete receivers, the sampling of an image in the matrix receiver into pixels leads to a decrease in the spatial information of the object. In a greater extent, these disadvantages can be avoided by using photosensitive matrix with a regularly changing (controlled) density of elementary receivers-matrix (RCDOER-matrix). Currently, there is no substantiation of the tasks and conditions for the hardware implementation of RCDOER-matrix. The algorithmic formation of a quasi-continuous image of observation devices with the RCDOER-matrix is proposed. The algorithm used a formal pixel-by-pixel description of the signals in the image. This algorithm formalizes the requirements for creating a photosensitive RCDOER-matrix of a certain size, as well as for changing the mechanism for forming and saving a frame with observation results. The application of the developed method will allow multiplying the pixel size of the image relative to the pixel size of the RCDOER-matrix. Developed algorithms for RCDOER-matrix are supplemented by formalizing the tasks that arise when creating prototypes. In addition, the conditions for hardware implementation are proposed, which ensure the completeness of registration of the observation picture, and allow avoiding excessive pixel measurements. Thus, the results of the research carried out approximate the practical application of RCDOER-matrix.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39775514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-rigid registration of medical images based on [Formula: see text] non-tensor product B-spline.","authors":"Qi Zheng, Chaoyue Liu, Jincai Chang","doi":"10.1186/s42492-022-00101-8","DOIUrl":"10.1186/s42492-022-00101-8","url":null,"abstract":"<p><p>In this study, a non-tensor product B-spline algorithm is applied to the search space of the registration process, and a new method of image non-rigid registration is proposed. The tensor product B-spline is a function defined in the two directions of x and y, while the non-tensor product B-spline [Formula: see text] is defined in four directions on the 2-type triangulation. For certain problems, using non-tensor product B-splines to describe the non-rigid deformation of an image can more accurately extract the four-directional information of the image, thereby describing the global or local non-rigid deformation of the image in more directions. Indeed, it provides a method to solve the problem of image deformation in multiple directions. In addition, the region of interest of medical images is irregular, and usually no value exists on the boundary triangle. The value of the basis function of the non-tensor product B-spline on the boundary triangle is only 0. The algorithm process is optimized. The algorithm performs completely automatic non-rigid registration of computed tomography and magnetic resonance imaging images of patients. In particular, this study compares the performance of the proposed algorithm with the tensor product B-spline registration algorithm. The results elucidate that the proposed algorithm clearly improves the accuracy.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39581076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iterative analytic extension in tomographic imaging.","authors":"Gengsheng L Zeng","doi":"10.1186/s42492-021-00099-5","DOIUrl":"https://doi.org/10.1186/s42492-021-00099-5","url":null,"abstract":"<p><p>If a spatial-domain function has a finite support, its Fourier transform is an entire function. The Taylor series expansion of an entire function converges at every finite point in the complex plane. The analytic continuation theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small neighborhood. Trying to obtain such an exact Taylor expansion is difficult. This paper proposes an iterative algorithm to extend the measured frequency components to unmeasured regions. Computer simulations show that the proposed algorithm converges very slowly, indicating that the problem is too ill-posed to be practically solvable using available methods.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39739174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of proficiencies of various textures and geometric features in breast mass classification using k-nearest neighbor.","authors":"Harmandeep Singh, Vipul Sharma, Damanpreet Singh","doi":"10.1186/s42492-021-00100-1","DOIUrl":"10.1186/s42492-021-00100-1","url":null,"abstract":"<p><p>This paper introduces a comparative analysis of the proficiencies of various textures and geometric features in the diagnosis of breast masses on mammograms. An improved machine learning-based framework was developed for this study. The proposed system was tested using 106 full field digital mammography images from the INbreast dataset, containing a total of 115 breast mass lesions. The proficiencies of individual and various combinations of computed textures and geometric features were investigated by evaluating their contributions towards attaining higher classification accuracies. Four state-of-the-art filter-based feature selection algorithms (Relief-F, Pearson correlation coefficient, neighborhood component analysis, and term variance) were employed to select the top 20 most discriminative features. The Relief-F algorithm outperformed other feature selection algorithms in terms of classification results by reporting 85.2% accuracy, 82.0% sensitivity, and 88.0% specificity. A set of nine most discriminative features were then selected, out of the earlier mentioned 20 features obtained using Relief-F, as a result of further simulations. The classification performances of six state-of-the-art machine learning classifiers, namely k-nearest neighbor (k-NN), support vector machine, decision tree, Naive Bayes, random forest, and ensemble tree, were investigated, and the obtained results revealed that the best classification results (accuracy = 90.4%, sensitivity = 92.0%, specificity = 88.0%) were obtained for the k-NN classifier with the number of neighbors having k = 5 and squared inverse distance weight. The key findings include the identification of the nine most discriminative features, that is, FD26 (Fourier Descriptor), Euler number, solidity, mean, FD14, FD13, periodicity, skewness, and contrast out of a pool of 125 texture and geometric features. The proposed results revealed that the selected nine features can be used for the classification of breast masses in mammograms.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39814529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatially resolved transcriptomics in immersive environments.","authors":"Denis Bienroth, Hieu T Nim, Dimitar Garkov, Karsten Klein, Sabrina Jaeger-Honz, Mirana Ramialison, Falk Schreiber","doi":"10.1186/s42492-021-00098-6","DOIUrl":"https://doi.org/10.1186/s42492-021-00098-6","url":null,"abstract":"<p><p>Spatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information. Upon data acquisition, one major hurdle is the subsequent interpretation and visualization of the datasets acquired. To address this challenge, VR-Cardiomics is presented, which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets. By implementing the system in two separate immersive environments, fish tank virtual reality (FTVR) and head-mounted display virtual reality (HMD-VR), biologists can interact with the data in novel ways not previously possible, such as visually exploring the gene expression patterns of an organ, and comparing genes based on their 3D expression profiles. Further, a biologist-driven use-case is presented, in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39675549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A projection-domain iterative algorithm for metal artifact reduction by minimizing the total-variation norm and the negative-pixel energy.","authors":"Gengsheng L Zeng","doi":"10.1186/s42492-021-00094-w","DOIUrl":"https://doi.org/10.1186/s42492-021-00094-w","url":null,"abstract":"<p><p>Metal objects in X-ray computed tomography can cause severe artifacts. The state-of-the-art metal artifact reduction methods are in the sinogram inpainting category and are iterative methods. This paper proposes a projection-domain algorithm to reduce the metal artifacts. In this algorithm, the unknowns are the metal-affected projections, while the objective function is set up in the image domain. The data fidelity term is not utilized in the objective function. The objective function of the proposed algorithm consists of two terms: the total variation of the metal-removed image and the energy of the negative-valued pixels in the image. After the metal-affected projections are modified, the final image is reconstructed via the filtered backprojection algorithm. The feasibility of the proposed algorithm has been verified by real experimental data.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39866982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive review of machine learning techniques on diabetes detection.","authors":"Toshita Sharma, Manan Shah","doi":"10.1186/s42492-021-00097-7","DOIUrl":"https://doi.org/10.1186/s42492-021-00097-7","url":null,"abstract":"<p><p>Diabetes mellitus has been an increasing concern owing to its high morbidity, and the average age of individual affected by of individual affected by this disease has now decreased to mid-twenties. Given the high prevalence, it is necessary to address with this problem effectively. Many researchers and doctors have now developed detection techniques based on artificial intelligence to better approach problems that are missed due to human errors. Data mining techniques with algorithms such as - density-based spatial clustering of applications with noise and ordering points to identify the cluster structure, the use of machine vision systems to learn data on facial images, gain better features for model training, and diagnosis via presentation of iridocyclitis for detection of the disease through iris patterns have been deployed by various practitioners. Machine learning classifiers such as support vector machines, logistic regression, and decision trees, have been comparative discussed various authors. Deep learning models such as artificial neural networks and recurrent neural networks have been considered, with primary focus on long short-term memory and convolutional neural network architectures in comparison with other machine learning models. Various parameters such as the root-mean-square error, mean absolute errors, area under curves, and graphs with varying criteria are commonly used. In this study, challenges pertaining to data inadequacy and model deployment are discussed. The future scope of such methods has also been discussed, and new methods are expected to enhance the performance of existing models, allowing them to attain greater insight into the conditions on which the prevalence of the disease depends.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"4 1","pages":"30"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39779231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of light field technologies.","authors":"Shuyao Zhou, Tianqian Zhu, Kanle Shi, Yazi Li, Wen Zheng, Junhai Yong","doi":"10.1186/s42492-021-00096-8","DOIUrl":"10.1186/s42492-021-00096-8","url":null,"abstract":"<p><p>Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes. They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space. The physical concept of light fields was first proposed in 1936, and light fields are becoming increasingly important in the field of computer graphics, especially with the fast growth of computing capacity as well as network bandwidth. In this article, light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years: (1) depth estimation, (2) content editing, (3) image quality, (4) scene reconstruction and view synthesis, and (5) industrial products because the technologies of lights fields also intersect with industrial applications. State-of-the-art research has focused on light field acquisition, manipulation, and display. In addition, the research has extended from the laboratory to industry. According to these achievements and challenges, in the near future, the applications of light fields could offer more portability, accessibility, compatibility, and ability to visualize the world.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"4 1","pages":"29"},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39691023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}