{"title":"离散接收机准连续观测装置的硬件实现特点。","authors":"Oleksandr Maryliv, Mykhailo Slonov","doi":"10.1186/s42492-022-00102-7","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes an approach to the formalization of tasks and conditions for the hardware implementation of quasi-continuous observation devices with discrete receivers in remote sensing systems. Observation devices with a matrix are used in medicine, ecology, aerospace photography, and geodesy, among other fields. In the discrete receivers, the sampling of an image in the matrix receiver into pixels leads to a decrease in the spatial information of the object. In a greater extent, these disadvantages can be avoided by using photosensitive matrix with a regularly changing (controlled) density of elementary receivers-matrix (RCDOER-matrix). Currently, there is no substantiation of the tasks and conditions for the hardware implementation of RCDOER-matrix. The algorithmic formation of a quasi-continuous image of observation devices with the RCDOER-matrix is proposed. The algorithm used a formal pixel-by-pixel description of the signals in the image. This algorithm formalizes the requirements for creating a photosensitive RCDOER-matrix of a certain size, as well as for changing the mechanism for forming and saving a frame with observation results. The application of the developed method will allow multiplying the pixel size of the image relative to the pixel size of the RCDOER-matrix. Developed algorithms for RCDOER-matrix are supplemented by formalizing the tasks that arise when creating prototypes. In addition, the conditions for hardware implementation are proposed, which ensure the completeness of registration of the observation picture, and allow avoiding excessive pixel measurements. Thus, the results of the research carried out approximate the practical application of RCDOER-matrix.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825919/pdf/","citationCount":"1","resultStr":"{\"title\":\"Features of hardware implementation of quasi-continuous observation devices with discrete receivers.\",\"authors\":\"Oleksandr Maryliv, Mykhailo Slonov\",\"doi\":\"10.1186/s42492-022-00102-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article proposes an approach to the formalization of tasks and conditions for the hardware implementation of quasi-continuous observation devices with discrete receivers in remote sensing systems. Observation devices with a matrix are used in medicine, ecology, aerospace photography, and geodesy, among other fields. In the discrete receivers, the sampling of an image in the matrix receiver into pixels leads to a decrease in the spatial information of the object. In a greater extent, these disadvantages can be avoided by using photosensitive matrix with a regularly changing (controlled) density of elementary receivers-matrix (RCDOER-matrix). Currently, there is no substantiation of the tasks and conditions for the hardware implementation of RCDOER-matrix. The algorithmic formation of a quasi-continuous image of observation devices with the RCDOER-matrix is proposed. The algorithm used a formal pixel-by-pixel description of the signals in the image. This algorithm formalizes the requirements for creating a photosensitive RCDOER-matrix of a certain size, as well as for changing the mechanism for forming and saving a frame with observation results. The application of the developed method will allow multiplying the pixel size of the image relative to the pixel size of the RCDOER-matrix. Developed algorithms for RCDOER-matrix are supplemented by formalizing the tasks that arise when creating prototypes. In addition, the conditions for hardware implementation are proposed, which ensure the completeness of registration of the observation picture, and allow avoiding excessive pixel measurements. Thus, the results of the research carried out approximate the practical application of RCDOER-matrix.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\" \",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825919/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-022-00102-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-022-00102-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Features of hardware implementation of quasi-continuous observation devices with discrete receivers.
This article proposes an approach to the formalization of tasks and conditions for the hardware implementation of quasi-continuous observation devices with discrete receivers in remote sensing systems. Observation devices with a matrix are used in medicine, ecology, aerospace photography, and geodesy, among other fields. In the discrete receivers, the sampling of an image in the matrix receiver into pixels leads to a decrease in the spatial information of the object. In a greater extent, these disadvantages can be avoided by using photosensitive matrix with a regularly changing (controlled) density of elementary receivers-matrix (RCDOER-matrix). Currently, there is no substantiation of the tasks and conditions for the hardware implementation of RCDOER-matrix. The algorithmic formation of a quasi-continuous image of observation devices with the RCDOER-matrix is proposed. The algorithm used a formal pixel-by-pixel description of the signals in the image. This algorithm formalizes the requirements for creating a photosensitive RCDOER-matrix of a certain size, as well as for changing the mechanism for forming and saving a frame with observation results. The application of the developed method will allow multiplying the pixel size of the image relative to the pixel size of the RCDOER-matrix. Developed algorithms for RCDOER-matrix are supplemented by formalizing the tasks that arise when creating prototypes. In addition, the conditions for hardware implementation are proposed, which ensure the completeness of registration of the observation picture, and allow avoiding excessive pixel measurements. Thus, the results of the research carried out approximate the practical application of RCDOER-matrix.