Features of hardware implementation of quasi-continuous observation devices with discrete receivers.

4区 计算机科学 Q1 Arts and Humanities
Oleksandr Maryliv, Mykhailo Slonov
{"title":"Features of hardware implementation of quasi-continuous observation devices with discrete receivers.","authors":"Oleksandr Maryliv,&nbsp;Mykhailo Slonov","doi":"10.1186/s42492-022-00102-7","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes an approach to the formalization of tasks and conditions for the hardware implementation of quasi-continuous observation devices with discrete receivers in remote sensing systems. Observation devices with a matrix are used in medicine, ecology, aerospace photography, and geodesy, among other fields. In the discrete receivers, the sampling of an image in the matrix receiver into pixels leads to a decrease in the spatial information of the object. In a greater extent, these disadvantages can be avoided by using photosensitive matrix with a regularly changing (controlled) density of elementary receivers-matrix (RCDOER-matrix). Currently, there is no substantiation of the tasks and conditions for the hardware implementation of RCDOER-matrix. The algorithmic formation of a quasi-continuous image of observation devices with the RCDOER-matrix is proposed. The algorithm used a formal pixel-by-pixel description of the signals in the image. This algorithm formalizes the requirements for creating a photosensitive RCDOER-matrix of a certain size, as well as for changing the mechanism for forming and saving a frame with observation results. The application of the developed method will allow multiplying the pixel size of the image relative to the pixel size of the RCDOER-matrix. Developed algorithms for RCDOER-matrix are supplemented by formalizing the tasks that arise when creating prototypes. In addition, the conditions for hardware implementation are proposed, which ensure the completeness of registration of the observation picture, and allow avoiding excessive pixel measurements. Thus, the results of the research carried out approximate the practical application of RCDOER-matrix.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8825919/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-022-00102-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

Abstract

This article proposes an approach to the formalization of tasks and conditions for the hardware implementation of quasi-continuous observation devices with discrete receivers in remote sensing systems. Observation devices with a matrix are used in medicine, ecology, aerospace photography, and geodesy, among other fields. In the discrete receivers, the sampling of an image in the matrix receiver into pixels leads to a decrease in the spatial information of the object. In a greater extent, these disadvantages can be avoided by using photosensitive matrix with a regularly changing (controlled) density of elementary receivers-matrix (RCDOER-matrix). Currently, there is no substantiation of the tasks and conditions for the hardware implementation of RCDOER-matrix. The algorithmic formation of a quasi-continuous image of observation devices with the RCDOER-matrix is proposed. The algorithm used a formal pixel-by-pixel description of the signals in the image. This algorithm formalizes the requirements for creating a photosensitive RCDOER-matrix of a certain size, as well as for changing the mechanism for forming and saving a frame with observation results. The application of the developed method will allow multiplying the pixel size of the image relative to the pixel size of the RCDOER-matrix. Developed algorithms for RCDOER-matrix are supplemented by formalizing the tasks that arise when creating prototypes. In addition, the conditions for hardware implementation are proposed, which ensure the completeness of registration of the observation picture, and allow avoiding excessive pixel measurements. Thus, the results of the research carried out approximate the practical application of RCDOER-matrix.

Abstract Image

Abstract Image

Abstract Image

离散接收机准连续观测装置的硬件实现特点。
本文提出了一种在遥感系统中采用离散接收器实现准连续观测装置的任务和条件的形式化方法。具有矩阵的观测设备用于医学、生态学、航空航天摄影和大地测量学等领域。在离散接收器中,将矩阵接收器中的图像采样为像素会导致目标空间信息的减少。在更大程度上,这些缺点可以通过使用具有规律变化(控制)的基本接收器矩阵(RCDOER-matrix)密度的光敏矩阵来避免。目前,rcdoer矩阵硬件实现的任务和条件还没有得到证实。提出了一种利用rcdoer矩阵生成观测设备准连续图像的算法。该算法使用图像中信号的正式逐像素描述。该算法形式化了创建一定尺寸的光敏rcdoer矩阵的要求,以及改变具有观测结果的帧的形成和保存机制。所开发的方法的应用将允许将图像的像素大小乘以相对于rcdoer矩阵的像素大小。通过形式化创建原型时出现的任务,补充了为rcdoer矩阵开发的算法。此外,提出了硬件实现的条件,保证了观测图像配准的完整性,避免了过多的像素测量。因此,研究结果近似于rcdoer矩阵的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信