Aryssa Simpson , Emily P. Mihalko , Caroline Fox , Smriti Sridharan , Manasi Krishnakumar , Ashley C. Brown
{"title":"Biomaterial systems for evaluating the influence of ECM mechanics on anti-fibrotic therapeutic efficacy","authors":"Aryssa Simpson , Emily P. Mihalko , Caroline Fox , Smriti Sridharan , Manasi Krishnakumar , Ashley C. Brown","doi":"10.1016/j.mbplus.2024.100150","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100150","url":null,"abstract":"<div><p>Cardiac fibrosis is characterized by excessive accumulation and deposition of ECM proteins. Cardiac fibrosis is commonly implicated in a variety of cardiovascular diseases, including post-myocardial infarction (MI). We have previously developed a dual-delivery nanogel therapeutic to deliver tissue plasminogen activator (tPA) and Y-27632 (a ROCK inhibitor) to address MI-associated coronary artery occlusion and downregulate cell-contractility mediated fibrotic responses. Initial <em>in vitro</em> studies were conducted on glass substrates. The study presented here employs the use of polyacrylamide (PA) gels and microgel thin films to mimic healthy and fibrotic cardiac tissue mechanics. Soft and stiff polyacrylamide substrates or high and low loss tangent microgel thin films were utilized to examine the influence of cell-substrate interactions on dual-loaded nanogel therapeutic efficacy. In the presence of Y-27632 containing nanogels, a reduction of fibrotic marker expression was noted on traditional PA gels mimicking healthy and fibrotic cardiac tissue mechanics. These findings differed on more physiologically relevant microgel thin films, where early treatment with the ROCK inhibitor intensified the fibrotic related responses.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000103/pdfft?md5=26ed3c5a9d143d43ca9d30c905a890a9&pid=1-s2.0-S2590028524000103-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chelsea G. Johansen , Keifer Holcomb , Amit Sela , Stephanie Morrall , Daewon Park , Nikki L. Farnsworth
{"title":"Extracellular matrix stiffness mediates insulin secretion in pancreatic islets via mechanosensitive Piezo1 channel regulated Ca2+ dynamics","authors":"Chelsea G. Johansen , Keifer Holcomb , Amit Sela , Stephanie Morrall , Daewon Park , Nikki L. Farnsworth","doi":"10.1016/j.mbplus.2024.100148","DOIUrl":"10.1016/j.mbplus.2024.100148","url":null,"abstract":"<div><p>The pancreatic islet is surrounded by ECM that provides both biochemical and mechanical cues to the islet β-cell to regulate cell survival and insulin secretion. Changes in ECM composition and mechanical properties drive β-cell dysfunction in many pancreatic diseases. While several studies have characterized changes in islet insulin secretion with changes in substrate stiffness, little is known about the mechanotransduction signaling driving altered islet function in response to mechanical cues. We hypothesized that increasing matrix stiffness will lead to insulin secretion dysfunction by opening the mechanosensitive ion channel Piezo1 and disrupting intracellular Ca<sup>2+</sup> dynamics in mouse and human islets. To test our hypothesis, mouse and human cadaveric islets were encapsulated in a biomimetic reverse thermal gel (RTG) scaffold with tailorable stiffness that allows formation of islet focal adhesions with the scaffold and activation of Piezo1 in 3D. Our results indicate that increased scaffold stiffness causes insulin secretion dysfunction mediated by increases in Ca<sup>2+</sup> influx and altered Ca<sup>2+</sup> dynamics via opening of the mechanosensitive Piezo1 channel. Additionally, inhibition of Piezo1 rescued glucose-stimulated insulin secretion (GSIS) in islets in stiff scaffolds. Overall, our results emphasize the role mechanical properties of the islet microenvironment plays in regulating function. It also supports further investigation into the modulation of Piezo1 channel activity to restore islet function in diseases like type 2 diabetes (T2D) and pancreatic cancer where fibrosis of the <em>peri</em>-islet ECM leads to increased tissue stiffness and islet dysfunction.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000085/pdfft?md5=d2836de4464c289026850dc0eaad9f95&pid=1-s2.0-S2590028524000085-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141044007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nalani Sachan , Colin K.L. Phoon , Lei Bu , Lior Zilberberg , Jasimuddin Ahamed , Daniel B. Rifkin
{"title":"Binding requirements for latent transforming growth factor Beta2 activation","authors":"Nalani Sachan , Colin K.L. Phoon , Lei Bu , Lior Zilberberg , Jasimuddin Ahamed , Daniel B. Rifkin","doi":"10.1016/j.mbplus.2024.100149","DOIUrl":"10.1016/j.mbplus.2024.100149","url":null,"abstract":"<div><p>Although the mechanism for activation of latent TGFβ1 and TGFβ3 is understood to involve the binding of the TGFβ propeptide (LAP) to both an integrin and an insoluble substrate, the activation of latent TGFβ2 has been unclear because the TGFβ2 LAP does not have the classical integrin binding sequence found in the other two TGFβ isoform LAPs. To assess the potential requirement for covalent linkage with a matrix or cell surface protein for the activation of latent TGFβ2, we generated mice in which the TGFβ2 Cys residue predicted to be involved in binding was mutated to Ser (<em>Tgfb2<sup>C24S</sup></em>). We reasoned that, if covalent interaction with a second molecule is required for latent TGFβ2 activation, mutant mice should display a <em>Tgfb2</em> null (<em>Tgfb2<sup>−/−</sup></em>)-like phenotype. <em>Tgfb2<sup>C24S</sup></em> mice closely phenocopy <em>Tgfb2<sup>−/−</sup></em> mice with death in utero between E18 and P1 and with congenital heart and kidney defects similar to those described for <em>Tgfb2<sup>−/−</sup></em> mice. The mutant latent TGFβ2 is secreted at levels similar to WT, yet TGFβ signaling monitored as nuclear pSmad2 is suppressed. We conclude that, like latent TGFβ1, latent TGFβ2 activation requires binding to an immobilized matrix or plasma membrane molecule.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100149"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000097/pdfft?md5=9d9845444985c386c38f833f6bf3b4c3&pid=1-s2.0-S2590028524000097-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikala C. Mueller , Yanmei Du , Lori A. Walker , Chelsea M. Magin
{"title":"Dynamically stiffening biomaterials reveal age- and sex-specific differences in pulmonary arterial adventitial fibroblast activation","authors":"Mikala C. Mueller , Yanmei Du , Lori A. Walker , Chelsea M. Magin","doi":"10.1016/j.mbplus.2024.100145","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100145","url":null,"abstract":"<div><p>Respiratory diseases like pulmonary arterial hypertension (PAH) frequently exhibit sexual dimorphism. Female PAH patients are more susceptible to the disease but have increased survival rates. This phenomenon is known as the estrogen paradox, and the underlying mechanisms are not fully understood. During PAH progression in vivo, human pulmonary arterial adventitial fibroblasts (hPAAFs) differentiate into an activated phenotype. These cells produce excess, aberrant extracellular matrix proteins that stiffen the surrounding pulmonary arterial tissues. Here, we employed dynamic poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based biomaterials to study how the age and sex of human serum influenced hPAAF activation in response to microenvironmental stiffening <em>in vitro</em>. Results showed female and male cells responded differently to increases in microenvironmental stiffness and serum composition. Male hPAAFs were less activated than female cells on soft hydrogels and more responsive to increases in microenvironmental stiffness regardless of serum composition. Female hPAAF activation followed this pattern only when cultured in younger (age < 50) female serum or when older (age ≥ 50) female serum was supplemented with estradiol. Otherwise, female hPAAF activation was relatively high on both soft and stiffened hydrogels, with little difference in activation between the two conditions. Collectively, these results suggest that it may be possible to model the estrogen paradox observed in PAH <em>in vitro</em> and that it is critical for researchers to report cell sex and serum source when conducting <em>in vitro</em> experimentation.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100145"},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259002852400005X/pdfft?md5=deec13ac5f0ad7be215c527f23382d18&pid=1-s2.0-S259002852400005X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ColPTMScape: An open access knowledge base for tissue-specific collagen PTM maps","authors":"Ashutosh Joshi , Ayush Nigam , Lalit Narayan Mudgal , Bhaskar Mondal , Trayambak Basak","doi":"10.1016/j.mbplus.2024.100144","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100144","url":null,"abstract":"<div><p>Collagen is a key component of the extracellular matrix (ECM). In the remodeling of ECM, a remarkable variation in collagen post-translational modifications (PTMs) occurs. This makes collagen a potential target for understanding extracellular matrix remodeling during pathological conditions. Over the years, scientists have gathered a huge amount of data about collagen PTM during extracellular matrix remodeling. To make such information easily accessible in a consolidated space, we have developed ColPTMScape (<span>https://colptmscape.iitmandi.ac.in/</span><svg><path></path></svg>), a dedicated knowledge base for collagen PTMs. The identified site-specific PTMs, quantitated PTM sites, and PTM maps of collagen chains are deliverables to the scientific community, especially to matrix biologists. Through this knowledge base, users can easily gain information related to the difference in the collagen PTMs across different tissues in different organisms.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000048/pdfft?md5=ee9db8c435eaf7dbec4ec7529118646f&pid=1-s2.0-S2590028524000048-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laminin-derived peptide, IKVAV, modulates macrophage phenotype through integrin mediation","authors":"Aakanksha Jha , Erika Moore","doi":"10.1016/j.mbplus.2024.100143","DOIUrl":"10.1016/j.mbplus.2024.100143","url":null,"abstract":"<div><p>Macrophages are highly plastic immune cells known to exist on a spectrum of phenotypes including pro-inflammatory (M1) or pro-healing (M2). Macrophages interact with extracellular matrix (ECM) ligands, such as fragments of collagen and laminin. Interaction of macrophages with ECM ligands is mediated through integrin receptors. However, the role of ECM ligands in directing macrophage function through integrins is not yet fully understood. Particularly, α2β1 has been implicated in modulating macrophage function, but complexity in mechanisms employed for integrin-ligation especially with laminin-derived peptides makes it challenging to understand macrophage-ECM interactions. We hypothesize that targeting α2β1 through laminin-derived peptide, IKVAV, will modulate macrophage phenotype. In this work we: i) investigated macrophage response to IKVAV in 2D and in a 3D platform, and ii) identified α2β1′s role as it pertains to macrophage modulation via IKVAV. Soluble IKVAV treatment significantly reduced M1 markers and increased M2 markers via immunocytochemistry and gene expression. While the 3D ECM-mimicking PEG-IKVAV hydrogels did not have significant effects in modulating macrophage phenotype, we found that macrophage modulation via IKVAV is dependent on the concentration of peptide used and duration of exposure. To investigate integrin-ligand interactions for macrophages, α2β1 signaling was modulated by antagonists and agonists. We observed that blocking α2β1 reduces M1 activation. To understand integrin-ligand interactions and leveraging the therapeutic ability of macrophages in designing immunomodulatory solutions, it is critical to elucidate IKVAV’s role in mediating macrophage phenotype.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000036/pdfft?md5=9fc044be5e1e4dc4a1f095bb96b9b049&pid=1-s2.0-S2590028524000036-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139882274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helena Raymond-Hayling , Yinhui Lu , Tom Shearer , Karl Kadler
{"title":"A preliminary study into the emergence of tendon microstructure during postnatal development","authors":"Helena Raymond-Hayling , Yinhui Lu , Tom Shearer , Karl Kadler","doi":"10.1016/j.mbplus.2024.100142","DOIUrl":"10.1016/j.mbplus.2024.100142","url":null,"abstract":"<div><p>Tendons maintain mechanical function throughout postnatal development whilst undergoing significant microstructural changes. We present a study of postnatal tendon growth and characterise the major changes in collagen fibril architecture in mouse tail tendon from birth to eight weeks by analysing the geometries of cross-sectional transmission electron microscopy images. This study finds that a bimodal distribution of fibril diameters emerges from a unimodal distribution of narrow fibrils as early as the eighth day postnatal, and three distinct fibril populations are visible at around 14 days. The tendons in this study do not show evidence of precise hexagonal packing, even at birth, and the spaces between the fibrils remain constant throughout development. The fibril number in the tissue stabilises around day 28, and the fibril area fraction stabilises around day 26. This study gives coarse-grained insight into the transition periods in early tendon development.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"21 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000024/pdfft?md5=45dd56b1c29032ce3e1911900a9f3479&pid=1-s2.0-S2590028524000024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139637217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lasse G. Lorentzen , Karin Yeung , Nikolaj Eldrup , Jonas P. Eiberg , Henrik H. Sillesen , Michael J. Davies
{"title":"Proteomic analysis of the extracellular matrix of human atherosclerotic plaques shows marked changes between plaque types","authors":"Lasse G. Lorentzen , Karin Yeung , Nikolaj Eldrup , Jonas P. Eiberg , Henrik H. Sillesen , Michael J. Davies","doi":"10.1016/j.mbplus.2024.100141","DOIUrl":"10.1016/j.mbplus.2024.100141","url":null,"abstract":"<div><p>Cardiovascular disease is the leading cause of death, with atherosclerosis the major underlying cause. While often asymptomatic for decades, atherosclerotic plaque destabilization and rupture can arise suddenly and cause acute arterial occlusion or peripheral embolization resulting in myocardial infarction, stroke and lower limb ischaemia. As extracellular matrix (ECM) remodelling is associated with plaque instability, we hypothesized that the ECM composition would differ between plaques. We analyzed atherosclerotic plaques obtained from 21 patients who underwent carotid surgery following recent symptomatic carotid artery stenosis. Plaques were solubilized using a new efficient, single-step approach. Solubilized proteins were digested to peptides, and analyzed by liquid chromatography-mass spectrometry using data-independent acquisition. Identification and quantification of 4498 plaque proteins was achieved, including 354 ECM proteins, with unprecedented coverage and high reproducibility. Multidimensional scaling analysis and hierarchical clustering indicate two distinct clusters, which correlate with macroscopic plaque morphology (soft/unstable versus hard/stable), ultrasound classification (echolucent versus echogenic) and the presence of hemorrhage/ulceration. We identified 714 proteins with differential abundances between these groups. Soft/unstable plaques were enriched in proteins involved in inflammation, ECM remodelling, and protein degradation (e.g. matrix metalloproteinases, cathepsins). In contrast, hard/stable plaques contained higher levels of ECM structural proteins (e.g. collagens, versican, nidogens, biglycan, lumican, proteoglycan 4, mineralization proteins). These data indicate that a single-step proteomics method can provide unique mechanistic insights into ECM remodelling and inflammatory mechanisms within plaques that correlate with clinical parameters, and help rationalize plaque destabilization. These data also provide an approach towards identifying biomarkers for individualized risk profiling of atherosclerosis.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"21 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000012/pdfft?md5=0cf5c67aa0b3306c6014e70a8011d47f&pid=1-s2.0-S2590028524000012-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139456080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of an in vitro engineered ligament model","authors":"Alec M. Avey , Omar Valdez , Keith Baar","doi":"10.1016/j.mbplus.2023.100140","DOIUrl":"https://doi.org/10.1016/j.mbplus.2023.100140","url":null,"abstract":"<div><p><em>In vivo</em> tendon and ligament research can be limited by the difficultly of obtaining tissue samples that can be biochemically analyzed. In this study, we characterize the most widely used <em>in vitro</em> engineered ligament model. Despite previous works suggesting multiple passages change gene expression in 2D primary tenocytes, we found no relationship between passage number and expression of classical tendon fibroblast markers across different biological donors. When engineered into 3D ligaments, there was an increase in maximal tensile load between 7 and 14 days in culture, that corresponded with an increase in collagen content. By contrast, percent collagen increased logarithmically from Day 7 to Day 14, and this was similar to the increase in the modulus of the tissue. Importantly, there was no relationship between passage number and mechanical function or collagen content in the two independent donors tested. These results suggest that the model develops quickly and is reliable across differing passage numbers. This provides the field with the ability to 1) consistently determine functional changes of interventions out to passage number 10; and 2) to time interventions to the appropriate developmental stage: developing/regenerating (Day 7) or mature (Day 14) tissue.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"21 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028523000133/pdfft?md5=b6d704769d86e1e0c11806088a61213c&pid=1-s2.0-S2590028523000133-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139100373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Designing collagens to shed light on the multi-scale structure–function mapping of matrix disorders","authors":"Sonal Gahlawat , Vikas Nanda , David I. Shreiber","doi":"10.1016/j.mbplus.2023.100139","DOIUrl":"10.1016/j.mbplus.2023.100139","url":null,"abstract":"<div><p>Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)<sub>n</sub>. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen’s triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of “designer collagens,” i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing <em>in vitro</em> studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"21 ","pages":"Article 100139"},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028523000121/pdfft?md5=f665a8dedce3173e618017d91ffbebfd&pid=1-s2.0-S2590028523000121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139017085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}