{"title":"The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity","authors":"Jake Ireland , Kristopher A. Kilian","doi":"10.1016/j.mbplus.2024.100160","DOIUrl":"10.1016/j.mbplus.2024.100160","url":null,"abstract":"<div><p>Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"24 ","pages":"Article 100160"},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000206/pdfft?md5=d5cecbae3ee49f649629c0a566f297f8&pid=1-s2.0-S2590028524000206-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean Lucas Kremer , Henrique Sanchez Ortega , Talita Souza-Siqueira , Claudia Blanes Angeli , Leo Kei Iwai , Giuseppe Palmisano , Claudimara Ferini Pacicco Lotfi
{"title":"Proteomic profiling of the extracellular matrix in the human adrenal cortex","authors":"Jean Lucas Kremer , Henrique Sanchez Ortega , Talita Souza-Siqueira , Claudia Blanes Angeli , Leo Kei Iwai , Giuseppe Palmisano , Claudimara Ferini Pacicco Lotfi","doi":"10.1016/j.mbplus.2024.100158","DOIUrl":"10.1016/j.mbplus.2024.100158","url":null,"abstract":"<div><p>The extracellular matrix (ECM) comprises macromolecules that shape a complex three-dimensional network. Filling the intercellular space and playing a crucial role in the structure and function of tissues, ECM regulates essential cellular processes such as adhesion, differentiation, and cell signaling. In the human adrenal gland, composed of cortex and medulla surrounded by a capsule, the ECM has not yet been directly described, although its impact on the processes of proliferation and steroidogenesis of the adrenal cortex is recognized. This study analyzes the ECM of the adult human adrenal cortex, which was separated into outer fraction (OF) and inner fraction (IF), by comparing their proteomic profiles. The study discusses the composition, spatial distribution, and relevance of differentially expressed ECM signatures of the adrenal cortex matrisome on adrenal structure and function. The findings were validated through database analysis (cross-validation), histochemical, and immunohistochemical approaches. A total of 121 ECM proteins were identified and categorized into glycoproteins, collagens, ECM regulators, proteoglycans, ECM-affiliated proteins, and secreted factors. Thirty-one ECM proteins were identified only in OF, nine only in IF, and 81 were identified in common with both fractions. Additionally, 106 ECM proteins were reported in the Human matrisome DB 2.0, and the proteins differentially expressed in OF and IF, were identified. This study provides significant insights into the composition and regulation of the ECM in the human adrenal cortex, shedding light on the adrenal microenvironment and its role in the functioning, maintenance, and renewal of the adrenal gland.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100158"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000188/pdfft?md5=cfc1b36c2953d4b9d1fcbeb6a6166497&pid=1-s2.0-S2590028524000188-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marloes van Mourik , Bart M. Tiemeijer , Maarten van Zon , Florencia Abinzano , Jurjen Tel , Jasper Foolen , Keita Ito
{"title":"Cartilage-derived cells display heterogeneous pericellular matrix synthesis in agarose microgels","authors":"Marloes van Mourik , Bart M. Tiemeijer , Maarten van Zon , Florencia Abinzano , Jurjen Tel , Jasper Foolen , Keita Ito","doi":"10.1016/j.mbplus.2024.100157","DOIUrl":"10.1016/j.mbplus.2024.100157","url":null,"abstract":"<div><p>The pericellular matrix (PCM) surrounding chondrocytes is essential for articular cartilage tissue engineering. As the current isolation methods to obtain chondrocytes with their PCM (chondrons) result in a heterogeneous mixture of chondrocytes and chondrons, regenerating the PCM using a tissue engineering approach could prove beneficial. In this study, we aimed to discern the behavior of articular chondrocytes (ACs) in regenerating the PCM in such an approach and whether this would also be true for articular cartilage-derived progenitor cells (ACPCs), as an alternative cell source. Bovine ACs and ACPCs were encapsulated in agarose microgels using droplet-based microfluidics. ACs were stimulated with TGF-β1 and dexamethasone and ACPCs were sequentially stimulated with BMP-9 followed by TGF-β1 and dexamethasone. After 0, 3, 5, and 10 days of culture, PCM components, type-VI collagen and perlecan, and ECM component, type-II collagen, were assessed using flow cytometry and fluorescence microscopy. Both ACs and ACPCs synthesized the PCM before the ECM. It was seen for the first time that synthesis of type-VI collagen always preceded perlecan. While the PCM synthesized by ACs resembled native chondrons after only 5 days of culture, ACPCs often made less well-structured PCMs. Both cell types showed variations between individual cells and donors. On one hand, this was more prominent in ACPCs, but also a subset of ACPCs showed superior PCM and ECM regeneration, suggesting that isolating these cells may potentially improve cartilage repair strategies.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100157"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000176/pdfft?md5=a6314ad1e2b54f25ca6e30f6af88488b&pid=1-s2.0-S2590028524000176-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pattarawan Pattamaprapanont , Eileen M. Cooney , Tara L. MacDonald , Joao A. Paulo , Hui Pan , Jonathan M. Dreyfuss , Sarah J. Lessard
{"title":"Matrisome proteomics reveals novel mediators of muscle remodeling with aerobic exercise training","authors":"Pattarawan Pattamaprapanont , Eileen M. Cooney , Tara L. MacDonald , Joao A. Paulo , Hui Pan , Jonathan M. Dreyfuss , Sarah J. Lessard","doi":"10.1016/j.mbplus.2024.100159","DOIUrl":"10.1016/j.mbplus.2024.100159","url":null,"abstract":"<div><p>Skeletal muscle has a unique ability to remodel in response to stimuli such as contraction and aerobic exercise training. Phenotypic changes in muscle that occur with training such as a switch to a more oxidative fiber type, and increased capillary density contribute to the well-known health benefits of aerobic exercise. The muscle matrisome likely plays an important role in muscle remodeling with exercise. However, due to technical limitations in studying muscle ECM proteins, which are highly insoluble, little is known about the muscle matrisome and how it contributes to muscle remodeling. Here, we utilized two-fraction methodology to extract muscle proteins, combined with multiplexed tandem mass tag proteomic technology to identify 161 unique ECM proteins in mouse skeletal muscle. In addition, we demonstrate that aerobic exercise training induces remodeling of a significant proportion of the muscle matrisome. We performed follow-up experiments to validate exercise-regulated ECM targets in a separate cohort of mice using Western blotting and immunofluorescence imaging. Our data demonstrate that changes in several key ECM targets are strongly associated with muscle remodeling processes such as increased capillary density in mice. We also identify LOXL1 as a novel muscle ECM target associated with aerobic capacity in humans. In addition, publically available data and databases were used for in silico modeling to determine the likely cellular sources of exercise-induced ECM remodeling targets and identify ECM interaction networks. This work greatly enhances our understanding of ECM content and function in skeletal muscle and demonstrates an important role for ECM remodeling in the adaptive response to exercise. The raw MS data have been deposited to the ProteomeXchange with identifier PXD053003.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100159"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259002852400019X/pdfft?md5=f9ac69cc862df261d53366122e2ba4fa&pid=1-s2.0-S259002852400019X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua A. Rich , Yu Fan , Qingrong Chen , Daoud Meerzaman , William G. Stetler-Stevenson , David Peeney
{"title":"Analysis of cancer cell line and tissue RNA sequencing data reveals an essential and dark matrisome","authors":"Joshua A. Rich , Yu Fan , Qingrong Chen , Daoud Meerzaman , William G. Stetler-Stevenson , David Peeney","doi":"10.1016/j.mbplus.2024.100156","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100156","url":null,"abstract":"<div><p>Extracellular matrix remodeling is a hallmark of tissue development, homeostasis, and disease. The processes that mediate remodeling, and the consequences of such, are the topic of extensive focus in biomedical research. Cell culture methods represent a crucial tool utilized by those interested in matrisome function, the easiest of which are implemented with immortalized/cancer cell lines. These cell lines often form the foundations of a research proposal, or serve as vehicles of validation for other model systems. For these reasons, it is important to understand the complement of matrisome genes that are expressed when identifying appropriate cell culture models for hypothesis testing. To this end, we harvested bulk RNA sequencing data from the Cancer Cell Line Encyclopedia (CCLE) to assess matrisome gene expression in 1019 human cell lines. Our examination reveals that a large proportion of the matrisome is poorly represented in human cancer cell lines, with approximately 10% not expressed above threshold in any of the cell lines assayed. Conversely, we identify clusters of essential/common matrisome genes that are abundantly expressed in cell lines. To validate these observations against tissue data, we compared our findings with bulk RNA sequencing data from the Genotype-Tissue Expression (GTEx) portal and The Cancer Genome Atlas (TCGA) program. This comparison demonstrates general agreement between the “essential/common” and “dark/uncommon” matrisome across the three datasets, albeit with discordance observed in 59 matrisome genes between cell lines and tissues. Notably, all of the discordant genes are essential/common in tissues yet minimally expressed in cell lines, underscoring critical considerations for matrix biology researchers employing immortalized cell lines for their investigations.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100156"},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000164/pdfft?md5=243092e6a458f09effb7c337f5b72353&pid=1-s2.0-S2590028524000164-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth A. Zimmermann , Taylor DeVet , Myriam Cilla , Laia Albiol , Kyle Kavaseri , Christine Andrea , Catherine Julien , Kerstin Tiedemann , Arash Panahifar , Sima A. Alidokht , Richard Chromik , Svetlana V. Komarova , Dieter P. Reinhardt , Paul Zaslansky , Bettina M. Willie
{"title":"Tissue material properties, whole-bone morphology and mechanical behavior in the Fbn1C1041G/+ mouse model of Marfan syndrome","authors":"Elizabeth A. Zimmermann , Taylor DeVet , Myriam Cilla , Laia Albiol , Kyle Kavaseri , Christine Andrea , Catherine Julien , Kerstin Tiedemann , Arash Panahifar , Sima A. Alidokht , Richard Chromik , Svetlana V. Komarova , Dieter P. Reinhardt , Paul Zaslansky , Bettina M. Willie","doi":"10.1016/j.mbplus.2024.100155","DOIUrl":"10.1016/j.mbplus.2024.100155","url":null,"abstract":"<div><p>Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1′s structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the <em>Fbn1</em><sup>C1041G/+</sup> mouse model of MFS. Tibiae of 10, 26, and 52-week-old female <em>Fbn1</em><sup>C1041G/+</sup> and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, <em>ex vivo</em> three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (μCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. <em>Fbn1</em><sup>C1041G/+</sup> mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in <em>Fbn1</em><sup>C1041G/+</sup> mice but cortical bone microarchitecture was similar in <em>Fbn1</em><sup>C1041G/+</sup> and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial–lateral direction and more curved above in LC compared to <em>Fbn1</em><sup>C1041G/+</sup> mice. The bone matrix crystallinity was 4 % lower in <em>Fbn1</em><sup>C1041G/+</sup> mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than <em>Fbn1</em><sup>C1041G/+</sup> mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in <em>Fbn1</em><sup>C1041G/+</sup> mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100155"},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000152/pdfft?md5=aa5b85d8cec6470f016ad8dea315109f&pid=1-s2.0-S2590028524000152-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141406658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiara Venegoni , Filippo Pederzoli , Irene Locatelli , Elisa Alchera , Laura Martinez-Vidal , Alessia Di Coste , Marco Bandini , Andrea Necchi , Francesco Montorsi , Andrea Salonia , Marco Moschini , Jithin Jose , Federico Scarfò , Roberta Lucianò , Massimo Alfano
{"title":"Topographic modification of the extracellular matrix precedes the onset of bladder cancer","authors":"Chiara Venegoni , Filippo Pederzoli , Irene Locatelli , Elisa Alchera , Laura Martinez-Vidal , Alessia Di Coste , Marco Bandini , Andrea Necchi , Francesco Montorsi , Andrea Salonia , Marco Moschini , Jithin Jose , Federico Scarfò , Roberta Lucianò , Massimo Alfano","doi":"10.1016/j.mbplus.2024.100154","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100154","url":null,"abstract":"<div><h3>Background</h3><p>Non-muscle invasive bladder cancer (NMIBC) patients are affected by a high risk of recurrence. The topography of collagen fibers represents a hallmark of the neoplastic extracellular microenvironment.</p></div><div><h3>Objective</h3><p>Assess the topographic change associated with different stages of bladder cancer (from neoplastic lesions to <em>bona fide</em> tumor) and whether those changes favour the development of NMIBC.</p></div><div><h3>Design, Setting, and Participants</h3><p>Seventy-one clinical samples of urothelial carcinoma at different stages were used. Topographic changes preceding tumor onset and progression were evaluated in the rat bladder cancer model induced by nitrosamine (BBN), a bladder-specific carcinogen. The preclinical model of actinic cystitis was also used in combination with BBN. Validated hematoxylin-eosin sections were used to assess the topography of collagen fibrils associated with pre-tumoral steps, NMIBC, and MIBC.</p></div><div><h3>Findings</h3><p>Linearization of collagen fibers was higher in Cis and Ta vs. dysplastic urothelium, further increased in T1 and greatest in T2 tumors. In the BBN preclinical model, an increase in the linearization of collagen fibers was established since the beginning of inflammation, such as the onset of atypia of a non-univocal nature and dysplasia, and further increased in the presence of the tumor. Linearization of collagen fibers in the model of actinic cystitis was associated with earlier onset of BBN-induced tumor.</p></div><div><h3>Conclusions</h3><p>The topographic modification of the extracellular microenvironment occurs during the inflammatory processes preceding and favoring the onset of bladder cancer. The topographic reconfiguration of the stroma could represent a marker for identifying and treating the non-neoplastic tissue susceptible to tumor recurrence.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100154"},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000140/pdfft?md5=2079258384fc3673f0b391044829eb0e&pid=1-s2.0-S2590028524000140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helena Raymond-Hayling , Yinhui Lu , Richa Garva , Tom Shearer , Karl E. Kadler
{"title":"Corrigendum to “A preliminary study into the emergence of tendon microstructure during postnatal development” [Matrix Biol. Plus 21 (2024) 100142]","authors":"Helena Raymond-Hayling , Yinhui Lu , Richa Garva , Tom Shearer , Karl E. Kadler","doi":"10.1016/j.mbplus.2024.100147","DOIUrl":"10.1016/j.mbplus.2024.100147","url":null,"abstract":"","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"22 ","pages":"Article 100147"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000073/pdfft?md5=a2165a3107a9bf148e6b5e909fe703d0&pid=1-s2.0-S2590028524000073-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan T. Lin , Benjamin Osipov , Danielle Steffen , Marin Chamberlin , Suraj J. Pathak , Blaine A. Christiansen , Kevin J.M. Paulussen , Keith Baar
{"title":"Saturated fatty acids negatively affect musculoskeletal tissues in vitro and in vivo","authors":"Ryan T. Lin , Benjamin Osipov , Danielle Steffen , Marin Chamberlin , Suraj J. Pathak , Blaine A. Christiansen , Kevin J.M. Paulussen , Keith Baar","doi":"10.1016/j.mbplus.2024.100153","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100153","url":null,"abstract":"<div><p>Fish oils rank among the world’s most popular nutritional supplements and are purported to have numerous health benefits. Previous work suggested that fish oils increase collagen production; however, the effect of fish oils on musculoskeletal health is poorly understood. Further, the divergent effects of omega-3 (Ω3FA) and saturated fatty acids (SFA) remains poorly understood. We tested the effects of Ω3FA and SFAs on <em>in vitro</em>-engineered human ligament (EHL) function. EHLs were treated with bovine serum albumin (BSA)-conjugated eicosapentaenoic acid (EPA, 20:5(n-3)), palmitic acid (PA, 16:0), or a BSA control for 6 days. EPA did not significantly alter, whereas PA significantly decreased EHL function and collagen content. To determine whether this was an <em>in vitro</em> artifact, mice were fed a control or high-lard diet for 14 weeks and musculoskeletal mass, insulin sensitivity, and the collagen content, and mechanics of tendon and bone were determined. Body weight was 40 % higher on a HFD, but muscle, tendon, and bone mass did not keep up with body weight resulting in relative losses in muscle mass, tendon, and bone collagen, as well as mechanical properties. Importantly, we show that PA acutely decreases collagen synthesis <em>in vitro</em> to a similar extent as the decrease in collagen content with chronic treatment. These data suggest that Ω3FAs have a limited effect on EHLs, whereas SFA exert a negative effect on collagen synthesis resulting in smaller and weaker musculoskeletal tissues both <em>in vitro</em> and <em>in vivo</em>.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000139/pdfft?md5=d180d21910ede72698b66b840b4bdb9a&pid=1-s2.0-S2590028524000139-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Te-An Chen , Brandon B. Zhao , Richard A. Balbin , Sameeksha Sharma , Donggi Ha , Timothy J. Kamp , Yuxiao Zhou , Feng Zhao
{"title":"Engineering a robust and anisotropic cardiac-specific extracellular matrix scaffold for cardiac patch tissue engineering","authors":"Te-An Chen , Brandon B. Zhao , Richard A. Balbin , Sameeksha Sharma , Donggi Ha , Timothy J. Kamp , Yuxiao Zhou , Feng Zhao","doi":"10.1016/j.mbplus.2024.100151","DOIUrl":"https://doi.org/10.1016/j.mbplus.2024.100151","url":null,"abstract":"<div><p>Extracellular matrix (ECM) fabricated using human induced pluripotent stem cells (hiPSCs)-derived cardiac fibroblasts (hiPSC-CFs) could serve as a completely biological scaffold for an engineered cardiac patch, leveraging the unlimited source and outstanding reproducibility of hiPSC-CFs. Additionally, hiPSC-CF-derived ECM (hiPSC-CF-ECM) holds the potential to enhance maturation of exogenous cardiomyocytes, such as hiPSC-derived cardiomyocytes (hiPSC-CMs), by providing a microenvironment rich in cardiac-specific biochemical and signaling cues. However, achieving sufficient robustness of hiPSC-CF-ECM is challenging. This study aims to achieve appropriate ECM deposition, scaffold thickness, and mechanical strength of an aligned hiPSC-CF-ECM by optimizing the culture period, ranging from 2 to 10 weeks, of hiPSC-CFs grown on micro-grated substrates, which can direct the alignment of both hiPSC-CFs and their secreted ECM. The hiPSC-CFs demonstrated a production rate of 13.5 µg ECM per day per 20,000 cells seeded. An anisotropic nanofibrous hiPSC-CF-ECM scaffold with a thickness of 20.0 ± 2.1 µm was achieved after 6 weeks of culture, followed by decellularization. Compositional analysis through liquid chromatography-mass spectrometry (LC-MS) revealed the presence of cardiac-specific fibrillar collagens, non-fibrillar collagens, and matricellular proteins. Uniaxial tensile stretching of the hiPSC-CF-ECM scaffold indicated robust tensile resilience. Finally, hiPSCs-CMs cultured on the hiPSC-CF-ECM exhibited alignment following the guidance of ECM nanofibers and demonstrated mature organization of key structural proteins. The culture duration of the anisotropic hiPSC-CF-ECM was successfully refined to achieve a robust scaffold containing structural proteins that resembles cardiac microenvironment. This completely biological, anisotropic, and cardiac-specific ECM holds great potential for cardiac patch engineering.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000115/pdfft?md5=bd5e6b9cc1d1b9530b6d246976193eea&pid=1-s2.0-S2590028524000115-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}