International Journal of Lightweight Materials and Manufacture最新文献

筛选
英文 中文
Experimental investigation of the clinching process for joining the three-layer aluminum/polymer/aluminum composite sheets 连接三层铝/聚合物/铝复合板的夹紧工艺实验研究
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-10-07 DOI: 10.1016/j.ijlmm.2023.10.003
Rasoul Naderli, Ali Fazli
{"title":"Experimental investigation of the clinching process for joining the three-layer aluminum/polymer/aluminum composite sheets","authors":"Rasoul Naderli,&nbsp;Ali Fazli","doi":"10.1016/j.ijlmm.2023.10.003","DOIUrl":"10.1016/j.ijlmm.2023.10.003","url":null,"abstract":"<div><p>Three-layer aluminum/polymer/aluminum composite sheets are among the new materials developed to reduce the weight and fuel consumption of vehicles. Using the conventional methods for joining these materials to other materials is challenging. In this paper, the joinability of the three-layer aluminum/polymer/aluminum to a single-layer 1 mm-thickness aluminum sheet, in the clinching process is investigated. Three-layer sheets of AA5754/polyethylene/AA5754 with thicknesses of 0.5/0.6/0.5 mm were produced under laboratory conditions using two different methods; with and without a local reinforcement piece in the polymer core. The prepared specimens are joined using various geometric parameters of the clinching tools. The joint sections and their geometric parameters including interlock and neck thickness are evaluated in different joint conditions. Also, the strengths of the joints are examined by shear and peel tests. Studies show that it is possible to use the clinching process to join aluminum/polymer/aluminum sheets. Also, with a proper design of tools, the joint strength can be in the same order as the strength of the clinching of single-layer sheets. The maximum shear and peel test strengths, obtained in this study are 1288 N and 540 N, respectively. Increasing the pin penetration depth increases the interlock up to an optimal value. However, further increases in the pin penetration depth will decrease the neck thickness and joint strength. The conical angle of the pin, increasing the die cavity depth, and using a local reinforcement piece reduces the strength of the clinched joint and interlock in these materials. In all the test conditions, the most suitable joint conditions were when the failure mode was combined bottom separation and neck fracture mode.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000513/pdfft?md5=6447b0f32591a713189a71874a06b8e7&pid=1-s2.0-S2588840423000513-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135605564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and research of technology for obtaining welding wire from aluminum-silicon alloys using rolling-extrusion 铝硅合金复合加工制焊丝工艺的开发与研究
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-10-05 DOI: 10.1016/j.ijlmm.2023.09.004
Sergey Borisovich Sidelnikov , Ruslan Evgenyevich Sokolov , Sergey Vladimirovich Belyaev , Nikolay Nikolaevich Dovzhenko , Ekaterina Sergeevna Lopatina , Igor Lazarevich Konstantinov , Denis Sergeevich Voroshilov , Yuriy Alexandrovich Gorbunov , Yulbarskhon Nabievich Mansurov , Roman Ilsurovich Galiev , Vladimir Ivanovich Ber
{"title":"Development and research of technology for obtaining welding wire from aluminum-silicon alloys using rolling-extrusion","authors":"Sergey Borisovich Sidelnikov ,&nbsp;Ruslan Evgenyevich Sokolov ,&nbsp;Sergey Vladimirovich Belyaev ,&nbsp;Nikolay Nikolaevich Dovzhenko ,&nbsp;Ekaterina Sergeevna Lopatina ,&nbsp;Igor Lazarevich Konstantinov ,&nbsp;Denis Sergeevich Voroshilov ,&nbsp;Yuriy Alexandrovich Gorbunov ,&nbsp;Yulbarskhon Nabievich Mansurov ,&nbsp;Roman Ilsurovich Galiev ,&nbsp;Vladimir Ivanovich Ber","doi":"10.1016/j.ijlmm.2023.09.004","DOIUrl":"10.1016/j.ijlmm.2023.09.004","url":null,"abstract":"<div><p>The article presents the results of research that make it possible to solve a significant scientific problem associated with the creation of new technologies for processing hard-to-deform aluminum-silicon alloys. For this purpose, tasks were set and solved for the development of technological schemes for obtaining longish products from AlSi12 and AlSi5 alloys using the methods of electromagnetic crystallization ingots of a small cross-section and the manufacture of deformed semi-finished products in the form of rods and wire using the method of combined rolling-extrusion (CRE) and drawing. To solve these problems, the modeling of the CRE process, theoretical and experimental studies were carried out, the results of which made it possible to obtain pilot batches of welding wire from the AlSi12 alloy, the level of properties of which meets the requirements of current standards. To analyze the combined rolling-extrusion, modeling was carried out using the DEFORM 3D software package. Regularities were established for changing the temperature-rate and force parameters of this process along the deformation zone. Since the use of the proposed technological scheme for the combined processing of aluminum-silicon alloys leads to a decrease in labor intensity and production costs, it can be recommended for use in industry to obtain longish products from them.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000483/pdfft?md5=3bef28d2f6e45a87f70390f92ca3699c&pid=1-s2.0-S2588840423000483-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134978333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the effect of materials and processing conditions in twin-screw extrusion 研究双螺杆挤压中材料和加工条件的影响
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-20 DOI: 10.1016/j.ijlmm.2023.09.003
Navod Thyashan , Yasith S. Perera , Ruimin Xiao , Chamil Abeykoon
{"title":"Investigation of the effect of materials and processing conditions in twin-screw extrusion","authors":"Navod Thyashan ,&nbsp;Yasith S. Perera ,&nbsp;Ruimin Xiao ,&nbsp;Chamil Abeykoon","doi":"10.1016/j.ijlmm.2023.09.003","DOIUrl":"10.1016/j.ijlmm.2023.09.003","url":null,"abstract":"<div><p>Three polymeric materials; polystyrene (amorphous), low-density polyethylene (semi-crystalline), and poly(methyl methacrylate) (amorphous) were used to explore their behavior and properties during processing using a co-rotating twin-screw extruder. Injection molding and compression molding were used for preparing the test specimens. Screw speed and barrel set temperatures were considered as the main processing variables while observing the process energy consumption of the extruder. The tensile, thermal, and rheological properties of the extruded materials under different processing conditions were evaluated. Test results confirmed that the motor power of the extruder for processing polystyrene and low-density polyethylene increased with increasing screw speed and decreased with increasing barrel set temperatures. Motor power for processing poly(methyl methacrylate) increased significantly with increasing screw speed. The total power consumption of the barrel heaters for processing polystyrene and low-density polyethylene slightly increased with the barrel set temperatures. The tensile modulus of polystyrene decreased with increasing screw speed at higher barrel set temperatures, while low-density polyethylene showed no significant variation. The tensile modulus of poly(methyl methacrylate) did not exhibit a clear trend with the extruder process settings. The effect of process settings on the glass transition temperature and melting temperature of the polymers was not significant, and no evidence was found of any molecular degradation during processing. Rheological properties of poly(methyl methacrylate) showed a significant variation with increasing screw speed and barrel set temperatures, while those of polystyrene and low-density polyethylene did not exhibit a consistent variation.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000471/pdfft?md5=c75759133cf83d1782dfdee48e3a48e2&pid=1-s2.0-S2588840423000471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135389326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An insight into high-temperature deformation mechanism of magnesium in-situ composite through development of Johnson-Cook and constitutive model 通过Johnson Cook和本构模型的发展深入了解镁原位复合材料的高温变形机制
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-09 DOI: 10.1016/j.ijlmm.2023.09.002
Rohit Jain, Harsh Soni, R.P. Mahto, B.N. Sahoo
{"title":"An insight into high-temperature deformation mechanism of magnesium in-situ composite through development of Johnson-Cook and constitutive model","authors":"Rohit Jain,&nbsp;Harsh Soni,&nbsp;R.P. Mahto,&nbsp;B.N. Sahoo","doi":"10.1016/j.ijlmm.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.ijlmm.2023.09.002","url":null,"abstract":"<div><p>The establishment of deformation mechanisms of Mg-metal matrix composite (Mg-MMC) is important to improve the high-temperature challenging applications. In this present work, an AZ91/TiC + TiB<sub>2</sub> hybrid <em>in-situ</em> Mg-MMC was synthesized, and its deformation mechanisms were studied through a uniaxial hot compressive test at different temperatures and strain rates. The Johnson-Cook (JC) model and constitutive equation were established using experimental stress-strain data. Through the development of JC model, it was revealed that the TiC–TiB<sub>2</sub> particles enhanced the yield strength parameter and increased the activation energy of the <em>in-situ</em> composite compared to the parent alloy. The load-shifting capability and grain refinement were found to be the dominating mechanisms, which effectively restricted dislocation movement during deformation, resulting in improved deformation resilience of the composite. A detailed study of JC model and constitutive equation parameters was analyzed with a focus on their microstructures.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction stir welding of carbon black reinforced high-density polyethylene tube-to-tubesheet joints 炭黑增强高密度聚乙烯管与管板接头的搅拌摩擦焊
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-07 DOI: 10.1016/j.ijlmm.2023.09.001
Syed Haris Iftikhar , Abdel-Hamid Ismail Mourad , Dinu Thomas Thekkuden , Nizamudeen Cherupurakal , R. Krishnapriya
{"title":"Friction stir welding of carbon black reinforced high-density polyethylene tube-to-tubesheet joints","authors":"Syed Haris Iftikhar ,&nbsp;Abdel-Hamid Ismail Mourad ,&nbsp;Dinu Thomas Thekkuden ,&nbsp;Nizamudeen Cherupurakal ,&nbsp;R. Krishnapriya","doi":"10.1016/j.ijlmm.2023.09.001","DOIUrl":"10.1016/j.ijlmm.2023.09.001","url":null,"abstract":"<div><p>Industrial heat exchanger applications dealing with highly corrosive fluids demand the use of thermoplastic heat exchangers because of the chemically inert and anti-fouling nature of the thermoplastics. A non-conventional joining framework, based on the friction stir welding (FSW) technique, is used to form high-quality thermoplastic tube-to-tubesheet joints (TTJs). The proposed technique has potential applications for thermoplastic shell-and-tube heat exchangers and piping industries (as flange-to-pipe joints). In this work, the tube and tubesheet materials made of carbon black reinforced high-density polyethylene were used. The effect of different FSW parameters (rotational speed, plunge depth, tube protrusion, dwell time) on the tube pull-out behavior was investigated. The FSW technique showed capabilities at a wide range of operating conditions. The highest load bearing capacity of 517 N was achieved using the FSW process, much higher than adhesive joints. Also, it provides higher extensions at maximum load than adhesive joints, with the highest extension of 5.161 mm. Two FSW cases provided high leak paths of 77% and 58% remaining sheet thickness (greater than tube thickness) along with high load bearing capacity and corresponding extensions. The macroscopic and SEM-based fractographic studies illustrated three types of failure behavior: ductile, brittle, or mixed depending on the FSW process conditions. The DSC results showed no significant crystallinity changes in the weld material. The TGA results showed no significant thermal degradation occurring in the weld material. Further, the FTIR analysis indicated possible oxidation of the weld material. The capability to form TTJs with high leak path, high load bearing capacity, and no significant material degradations makes the FSW technique suitable for thermoplastic shell-and-tube heat exchanger applications.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45886145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accurate simulation on the forming and failure processes of fiber metal laminates: A review 金属纤维层合板成形与失效过程的精确模拟研究进展
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-01 DOI: 10.1016/j.ijlmm.2023.02.003
Yizhe Chen , Yusen Yang , Zhuoqun Wang , Hui Wang , Jun Li , Lin Hua
{"title":"Accurate simulation on the forming and failure processes of fiber metal laminates: A review","authors":"Yizhe Chen ,&nbsp;Yusen Yang ,&nbsp;Zhuoqun Wang ,&nbsp;Hui Wang ,&nbsp;Jun Li ,&nbsp;Lin Hua","doi":"10.1016/j.ijlmm.2023.02.003","DOIUrl":"10.1016/j.ijlmm.2023.02.003","url":null,"abstract":"<div><p>Fiber metal laminates (FMLs) are a kind of composite material prepared by alternately arranging fiber layers and metal sheets at a certain temperature and pressure. It has been widely used in aerospace and automobile transportation for its excellent combined mechanical properties. For the forming and failure processes of FMLs, the interfacial behavior and damage evolution of components are hard to be observed experimentally. Therefore, it is of great importance to simulate them accurately. In this article, the development and application of FMLs were first introduced. Then the comparison of constitutive models in FMLs simulation was given, especially the dynamic constitutive model applied to the metal layer. After that, the important aspects of damage evolution, interface behavior, and model optimization in the simulation on the forming and failure process of FMLs were analyzed, and the emphasis is on the nonlinear progressive damage model of different materials, the construction of cohesive zone model and superior meshing methods. Furthermore, the experimental verifications of FMLs simulation were given. It is shown that the deformation behavior and damage characteristics of various kinds of FMLs during forming and failure processing can be accurately predicted by reasonable numerical simulation. Eventually, the future outlooks for numerical simulation of FMLs was proposed. Through this review, scholars and engineers who are interested in FMLs can systematically understand the numerical simulation work of FMLs, which is helpful in improving the quality of research in this field.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41795540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application of artificial neural networks for characterisation of formability properties of sheet metals 人工神经网络在金属板材成形性能表征中的应用
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-01 DOI: 10.1016/j.ijlmm.2023.08.003
Imre Czinege, Dóra Harangozó
{"title":"Application of artificial neural networks for characterisation of formability properties of sheet metals","authors":"Imre Czinege,&nbsp;Dóra Harangozó","doi":"10.1016/j.ijlmm.2023.08.003","DOIUrl":"10.1016/j.ijlmm.2023.08.003","url":null,"abstract":"<div><p>Artificial neural network models were developed to estimate forming limit diagrams from tensile test results based on our own experiments and data from the literature for steel and aluminium sheet metals. Experimental data were obtained from tensile tests and Nakazima tests. The input parameters used in the models were yield strength, ultimate tensile strength, uniform elongation, elongation at fracture, anisotropy coefficient and hardening exponent or combinations of these. The forming limit curves were defined by the measured minor and major strains using seven standard test specimens. After training the artificial neural network, the difference between measured and predicted results was evaluated by linear regression parameters and by the absolute errors. For steel sheet data taken from the literature, the estimated outputs of ANN models were compared with the results of empirical formulae developed by different authors. It was found that there was a high correlation coefficient between predicted and measured values for models using neural networks, which gave better approximations than other linear and non-linear models.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000446/pdfft?md5=0ccc0f701419f0ab3f435cbab4bc051b&pid=1-s2.0-S2588840423000446-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135048777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved structural uniformity and specific strength of commercially pure aluminum through variable temperature multi axial forging: Finite element analysis and experimental study 通过变温多轴锻造提高商品纯铝的组织均匀性和比强度:有限元分析和实验研究
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-01 DOI: 10.1016/j.ijlmm.2023.02.001
S. Deb , M.B. Abhilash , R.J. Immanuel , S.K. Panigrahi
{"title":"Improved structural uniformity and specific strength of commercially pure aluminum through variable temperature multi axial forging: Finite element analysis and experimental study","authors":"S. Deb ,&nbsp;M.B. Abhilash ,&nbsp;R.J. Immanuel ,&nbsp;S.K. Panigrahi","doi":"10.1016/j.ijlmm.2023.02.001","DOIUrl":"10.1016/j.ijlmm.2023.02.001","url":null,"abstract":"<div><p>Multi axial forging (MAF) is a forging-based severe plastic deformation (SPD) technique which is prominently used to refine grain structure and improve the strength of the material. While the advantages of MAF lie in its simple tool design and ability to process bulk materials, the main limitation is the inhomogeneity in the generated microstructure across the cross-section at initial passes. Increasing the number of MAF passes may partially help to solve the problem, but arbitrary increase in the number of passes may lead to redundant increase in manufacturing cost and time. The current work proposes a manufacturing strategy for MAF to achieve homogeneous microstructure with uniform grain refinement by using reduced number of MAF passes. To achieve structural uniformity within fewer MAF passes, a controlled thermo-mechanical based optimum MAF process strategy is developed on a commercial pure Al through the finite element analysis (FEA) simulation and the same is validated experimentally. The manufacturing strategy resulted significant grain refinement via simultaneous action of continuous dynamic recrystallization and geometric dynamic recrystallization with microstructural homogeneity which caused a significant improvement in tensile properties (more than two times than the base) with considerable ductility (more than 25%) and isotropy property across the thickness. The scientific knowhow has been established via processing–structure–property correlation-ship.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48929812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Impact of aging temperature on the metallurgical and dry sliding wear behaviour of LM25 / Al2O3 metal matrix composite for potential automotive application 时效温度对潜在汽车应用LM25/Al2O3金属基复合材料冶金和干滑动磨损行为的影响
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-01 DOI: 10.1016/j.ijlmm.2023.01.002
Harinath Ravinath , Ijas Ahammed I , Harigovind P , Achu Devan S , Aravind Senan V R , Karthik V. Shankar , Nandakishor S
{"title":"Impact of aging temperature on the metallurgical and dry sliding wear behaviour of LM25 / Al2O3 metal matrix composite for potential automotive application","authors":"Harinath Ravinath ,&nbsp;Ijas Ahammed I ,&nbsp;Harigovind P ,&nbsp;Achu Devan S ,&nbsp;Aravind Senan V R ,&nbsp;Karthik V. Shankar ,&nbsp;Nandakishor S","doi":"10.1016/j.ijlmm.2023.01.002","DOIUrl":"https://doi.org/10.1016/j.ijlmm.2023.01.002","url":null,"abstract":"<div><p>The current study exhibits the influence of aging temperatures on the metallurgical, hardness, and dry-sliding wear behaviour of LM25 (Al-6.6Si-0.2Mg) alloy reinforced with Al<sub>2</sub>O<sub>3</sub> particles. The LM25 alloy reinforced with 10 wt% of alumina particles was fabricated using the liquid metallurgy route followed by solutionizing and aging. The baseline LM25 alloy and its composite were solutionized at 538 °C for 8 h and were aged at 155, 165, and 175 °C for 12 h. Optical, FESEM, EDS, and X-ray diffraction analysis were done on the fabricated alloy and its composite in all conditions. The microstructure revealed the formation of the Mg<sub>2</sub>Si phase in the baseline alloy and the MgAl<sub>2</sub>O<sub>4</sub> spinel generated at the composite interface of the aluminium matrix. The heat-treated alloy and composites were tested for their hardness on the Vickers microhardness tester. It was concluded that the aging temperature of 155 °C displayed significant enhancement in hardness values for tested samples. The heat-treated alloy and composite samples displayed an increment of 96% and 55% in hardness values relative to LM25. The wear rate and friction coefficient for the fabricated samples were analyzed using the pin-on-disc tribometer under dry sliding conditions. The hardness value increased from the as-cast state to samples aged at 155 °C and then decreased at 165 and 175 °C. Based on the wear study, a 14% and 25% decrease in the wear rate values for heat-treated alloy and composites were noted when sliding velocity was increased from 1 m/s to 3 m/s. However, the coefficient of friction (COF) decreased by 23% and 13% for the specimens in the same conditions. Furthermore, a similar trend was displayed by age-hardened LM25 alloy and the composite when subjected to varying load (5, 10, 15 N) condition. Lastly, the worn-out surface mechanisms were examined using FESEM analysis. Amongst the investigated samples, LM25/10 wt% Al<sub>2</sub>O<sub>3</sub> composite aged at 155 °C revealed the least wear rate when subjected to an external load of 5 N and sliding velocity of 2 m/s. Therefore, it can be suggested to manufacture components in the automotive industry.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50188836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sustainable cooling/lubrication induced thermo-mechanical effects on ultrasonic vibration helical milling of CFRP/Ti–6Al–4V stacks 持续冷却/润滑对CFRP/Ti-6Al-4V叠层超声振动螺旋铣削的热机械效应
International Journal of Lightweight Materials and Manufacture Pub Date : 2023-09-01 DOI: 10.1016/j.ijlmm.2023.02.002
Jiale Wang , Jiaying Ge , Guang Chen , Jian Liu , Zhiyi Wang , Chengzu Ren
{"title":"Sustainable cooling/lubrication induced thermo-mechanical effects on ultrasonic vibration helical milling of CFRP/Ti–6Al–4V stacks","authors":"Jiale Wang ,&nbsp;Jiaying Ge ,&nbsp;Guang Chen ,&nbsp;Jian Liu ,&nbsp;Zhiyi Wang ,&nbsp;Chengzu Ren","doi":"10.1016/j.ijlmm.2023.02.002","DOIUrl":"10.1016/j.ijlmm.2023.02.002","url":null,"abstract":"<div><p>Sustainable cooling/lubrication strategies including dry, minimum quantity lubrication (MQL), cryogenic (LN<sub>2</sub>) and hybrid (MQL and LN<sub>2</sub>) were used in ultrasonic vibration helical milling (UVHM) machining to improve the performance of hole-making for CFRP/Ti–6Al–4V stacks. The machining temperatures and forces were measured to characterize the thermo-mechanical effects on UVHM with different cooling/lubrication conditions. The machining temperatures at cryogenic conditions were −146 °C, −170 °C and −53 °C at CFRP layer, interface and Ti–6Al–4V layer, respectively. Axial and radial resultant forces at different conditions were highly related to the cutting temperature. Fiber removal mechanism at different conditions was analyzed according to the cutting temperatures, forces and the kinematic analysis in UVHM. Effects of sustainable cooling strategies and ultrasonic vibration on the hole surface texture of Ti–6Al–4V alloy were discussed. The amplitudes at different conditions varied approximately from 3.5 to 7 μm due to the variation of the forces. High precision of the exit geometry was achieved, as the height of hole exit burrs at Ti–6Al–4V layer were less than 40 μm except for the cryogenic condition. Diameters at the MQL and hybrid conditions were closer to the target diameter (<em>ϕ</em>10 mm), and the precision of the cylindricity of the machined holes of the stacks with the MQL and hybrid cooling conditions was higher than those at other conditions. Tool wear at different conditions were analyzed according to the SEM and EDS results. This work provided the fundamental understand of the hybrid process with sustainable cooling/lubrication strategy in UVHM machining. High quality of holes in CFRP/Ti–6Al–4V stacks were achieved by the hybrid processes.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45178407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信