用 GNP 和 CF 增强的低密度聚乙烯和聚苯乙烯聚合物基复合材料的力学性能 - 综述

Q1 Engineering
Bilal Gayretli , Rajinth Shanthar , Tahsin Tecelli Öpöz , Chamil Abeykoon
{"title":"用 GNP 和 CF 增强的低密度聚乙烯和聚苯乙烯聚合物基复合材料的力学性能 - 综述","authors":"Bilal Gayretli ,&nbsp;Rajinth Shanthar ,&nbsp;Tahsin Tecelli Öpöz ,&nbsp;Chamil Abeykoon","doi":"10.1016/j.ijlmm.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>There is always a vital need for more robust, affordable, and multifunctional materials to satisfy the demands of industrial consumers. Therefore, polymer matrix composites (dual and hybrid matrix) have become popular with multiple fillers to meet these needs. Graphene nano-platelet (GNP) and Carbon fibre (CF) are popular among those fillers due to their superior properties, such as good mechanical, thermal, and electrical properties. Low density polyethylene (LDPE), Polystyrene (PS), GNP, and CF are popular and heavily used in the packaging, automotive, and aerospace industries. However, it would be good to look at how these areas have evolved over the last few decades. Hence, this review focuses on a comparison of LDPE and PS as a matrix and GNP and CF as a filler, considering the content that determines the overall performance of blends and composites. The literature was screened for the last few decades. The blends and/or composites produced by a twin-screw extruder were included. A total of 1628 relevant papers were retrieved from all databases. Based on the review, it was deduced that more research should be needed in areas such as the aerospace industry to identify optimum content. Most of the analysis showed that factors such as filler surface area, dispersion, and content affect overall blends and composites' performance in terms of mechanical properties, especially elastic modulus and tensile strength, and other properties. Based on the review, it was realised that using 20 and 30 wt%, 2 and 30 wt%, 2 and 4 wt%, and 20 and 30 wt% filler was the most common combination giving the optimum content for LDPE, PS, GNP, and CF, respectively. EMS and TSH changes of the composites were calculated according to their optimum content. Overall, LDPE and PS are good in packaging areas, but their mechanical properties still need to be improved for use in industries such as automotive, aerospace etc. Due to the advantages of GNP and CF, they are used in different applications, such as electrical devices, medical tools, and automobile vehicles. However, these properties are affected easily by interfacial adhesion, dispersion, and aggregation. Many researchers have searched these parameters and analysed how to prevent the negative effects of these parameters. In conclusion, this review will be helpful for researchers and industrial people to be aware of the state-of-the-art of carbon-based composites and the evolution of LDPE, PS, GNP, and CF.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258884042400026X/pdfft?md5=d47bbcca45f4222ca945685c0f60ee7c&pid=1-s2.0-S258884042400026X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of LDPE and PS polymer matrix composites reinforced with GNP and CF — A critical review\",\"authors\":\"Bilal Gayretli ,&nbsp;Rajinth Shanthar ,&nbsp;Tahsin Tecelli Öpöz ,&nbsp;Chamil Abeykoon\",\"doi\":\"10.1016/j.ijlmm.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is always a vital need for more robust, affordable, and multifunctional materials to satisfy the demands of industrial consumers. Therefore, polymer matrix composites (dual and hybrid matrix) have become popular with multiple fillers to meet these needs. Graphene nano-platelet (GNP) and Carbon fibre (CF) are popular among those fillers due to their superior properties, such as good mechanical, thermal, and electrical properties. Low density polyethylene (LDPE), Polystyrene (PS), GNP, and CF are popular and heavily used in the packaging, automotive, and aerospace industries. However, it would be good to look at how these areas have evolved over the last few decades. Hence, this review focuses on a comparison of LDPE and PS as a matrix and GNP and CF as a filler, considering the content that determines the overall performance of blends and composites. The literature was screened for the last few decades. The blends and/or composites produced by a twin-screw extruder were included. A total of 1628 relevant papers were retrieved from all databases. Based on the review, it was deduced that more research should be needed in areas such as the aerospace industry to identify optimum content. Most of the analysis showed that factors such as filler surface area, dispersion, and content affect overall blends and composites' performance in terms of mechanical properties, especially elastic modulus and tensile strength, and other properties. Based on the review, it was realised that using 20 and 30 wt%, 2 and 30 wt%, 2 and 4 wt%, and 20 and 30 wt% filler was the most common combination giving the optimum content for LDPE, PS, GNP, and CF, respectively. EMS and TSH changes of the composites were calculated according to their optimum content. Overall, LDPE and PS are good in packaging areas, but their mechanical properties still need to be improved for use in industries such as automotive, aerospace etc. Due to the advantages of GNP and CF, they are used in different applications, such as electrical devices, medical tools, and automobile vehicles. However, these properties are affected easily by interfacial adhesion, dispersion, and aggregation. Many researchers have searched these parameters and analysed how to prevent the negative effects of these parameters. In conclusion, this review will be helpful for researchers and industrial people to be aware of the state-of-the-art of carbon-based composites and the evolution of LDPE, PS, GNP, and CF.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S258884042400026X/pdfft?md5=d47bbcca45f4222ca945685c0f60ee7c&pid=1-s2.0-S258884042400026X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258884042400026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258884042400026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了满足工业消费者的需求,人们总是迫切需要更加坚固耐用、经济实惠的多功能材料。因此,聚合物基复合材料(双基体和混合基体)开始流行使用多种填料来满足这些需求。石墨烯纳米板(GNP)和碳纤维(CF)因其卓越的性能,如良好的机械、热和电性能,在这些填料中颇受欢迎。低密度聚乙烯 (LDPE)、聚苯乙烯 (PS)、GNP 和 CF 在包装、汽车和航空航天工业中得到广泛应用。不过,我们最好还是看看这些领域在过去几十年中是如何发展的。因此,本综述重点比较了作为基体的 LDPE 和 PS 与作为填料的 GNP 和 CF,并考虑了决定共混物和复合材料整体性能的含量。对过去几十年的文献进行了筛选。其中包括用双螺杆挤出机生产的共混物和/或复合材料。从所有数据库中共检索到 1628 篇相关论文。根据综述推断,应在航空航天工业等领域开展更多研究,以确定最佳含量。大部分分析表明,填料表面积、分散度和含量等因素会影响混合物和复合材料在机械性能(尤其是弹性模量和拉伸强度)和其他性能方面的整体表现。综上所述,使用 20 和 30 wt%、2 和 30 wt%、2 和 4 wt% 以及 20 和 30 wt% 的填料是最常见的组合,它们分别给出了 LDPE、PS、GNP 和 CF 的最佳含量。根据最佳含量计算了复合材料的 EMS 和 TSH 变化。总体而言,低密度聚乙烯和聚苯乙烯在包装领域具有良好的应用前景,但在汽车、航空航天等行业的应用中,它们的机械性能仍有待提高。由于 GNP 和 CF 的优点,它们被应用于不同的领域,如电气设备、医疗工具和汽车。然而,这些特性很容易受到界面粘附、分散和聚集的影响。许多研究人员对这些参数进行了研究,并分析了如何防止这些参数的负面影响。总之,这篇综述将有助于研究人员和工业界人士了解碳基复合材料的最新发展以及 LDPE、PS、GNP 和 CF 的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical properties of LDPE and PS polymer matrix composites reinforced with GNP and CF — A critical review

There is always a vital need for more robust, affordable, and multifunctional materials to satisfy the demands of industrial consumers. Therefore, polymer matrix composites (dual and hybrid matrix) have become popular with multiple fillers to meet these needs. Graphene nano-platelet (GNP) and Carbon fibre (CF) are popular among those fillers due to their superior properties, such as good mechanical, thermal, and electrical properties. Low density polyethylene (LDPE), Polystyrene (PS), GNP, and CF are popular and heavily used in the packaging, automotive, and aerospace industries. However, it would be good to look at how these areas have evolved over the last few decades. Hence, this review focuses on a comparison of LDPE and PS as a matrix and GNP and CF as a filler, considering the content that determines the overall performance of blends and composites. The literature was screened for the last few decades. The blends and/or composites produced by a twin-screw extruder were included. A total of 1628 relevant papers were retrieved from all databases. Based on the review, it was deduced that more research should be needed in areas such as the aerospace industry to identify optimum content. Most of the analysis showed that factors such as filler surface area, dispersion, and content affect overall blends and composites' performance in terms of mechanical properties, especially elastic modulus and tensile strength, and other properties. Based on the review, it was realised that using 20 and 30 wt%, 2 and 30 wt%, 2 and 4 wt%, and 20 and 30 wt% filler was the most common combination giving the optimum content for LDPE, PS, GNP, and CF, respectively. EMS and TSH changes of the composites were calculated according to their optimum content. Overall, LDPE and PS are good in packaging areas, but their mechanical properties still need to be improved for use in industries such as automotive, aerospace etc. Due to the advantages of GNP and CF, they are used in different applications, such as electrical devices, medical tools, and automobile vehicles. However, these properties are affected easily by interfacial adhesion, dispersion, and aggregation. Many researchers have searched these parameters and analysed how to prevent the negative effects of these parameters. In conclusion, this review will be helpful for researchers and industrial people to be aware of the state-of-the-art of carbon-based composites and the evolution of LDPE, PS, GNP, and CF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信