Andreas Schüller, Lena Studt-Reinhold, Harald Berger, Lucia Silvestrini, Roman Labuda, Ulrich Güldener, Markus Gorfer, Markus Bacher, Maria Doppler, Erika Gasparotto, Arianna Gattesco, Michael Sulyok, Joseph Strauss
{"title":"Genome analysis of Cephalotrichum gorgonifer and identification of the biosynthetic pathway for rasfonin, an inhibitor of KRAS dependent cancer.","authors":"Andreas Schüller, Lena Studt-Reinhold, Harald Berger, Lucia Silvestrini, Roman Labuda, Ulrich Güldener, Markus Gorfer, Markus Bacher, Maria Doppler, Erika Gasparotto, Arianna Gattesco, Michael Sulyok, Joseph Strauss","doi":"10.1186/s40694-023-00158-x","DOIUrl":"10.1186/s40694-023-00158-x","url":null,"abstract":"<p><strong>Background: </strong>Fungi are important sources for bioactive compounds that find their applications in many important sectors like in the pharma-, food- or agricultural industries. In an environmental monitoring project for fungi involved in soil nitrogen cycling we also isolated Cephalotrichum gorgonifer (strain NG_p51). In the course of strain characterisation work we found that this strain is able to naturally produce high amounts of rasfonin, a polyketide inducing autophagy, apoptosis, necroptosis in human cell lines and showing anti-tumor activity in KRAS-dependent cancer cells.</p><p><strong>Results: </strong>In order to elucidate the biosynthetic pathway of rasfonin, the strain was genome sequenced, annotated, submitted to transcriptome analysis and genetic transformation was established. Biosynthetic gene cluster (BGC) prediction revealed the existence of 22 BGCs of which the majority was not expressed under our experimental conditions. In silico prediction revealed two BGCs with a suite of enzymes possibly involved in rasfonin biosynthesis. Experimental verification by gene-knock out of the key enzyme genes showed that one of the predicted BGCs is indeed responsible for rasfonin biosynthesis.</p><p><strong>Conclusions: </strong>This study identified a biosynthetic gene cluster containing a key-gene responsible for rasfonin production. Additionally, molecular tools were established for the non-model fungus Cephalotrichum gorgonifer which allows strain engineering and heterologous expression of the BGC for high rasfonin producing strains and the biosynthesis of rasfonin derivates for diverse applications.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9714149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadeem I Elhussiny, Ahmed M A Mohamed, Heba A El-Refai, Sayeda S Mohamed, Yousseria M Shetaia, Hala A Amin, Gerd Klöck
{"title":"Biocatalysis of triglycerides transesterification using fungal biomass: a biorefinery approach.","authors":"Nadeem I Elhussiny, Ahmed M A Mohamed, Heba A El-Refai, Sayeda S Mohamed, Yousseria M Shetaia, Hala A Amin, Gerd Klöck","doi":"10.1186/s40694-023-00160-3","DOIUrl":"https://doi.org/10.1186/s40694-023-00160-3","url":null,"abstract":"<p><strong>Background: </strong>The use of microbial biomasses, such as fungal biomass, to catalyze the transesterification of triglycerides (TG) for biodiesel production provides a sustainable, economical alternative while still having the main advantages of expensive immobilized enzymes.</p><p><strong>Results: </strong>Biomasses of Aspergillus flavus and Rhizopus stolonifera were used to catalyze the transesterification of TG in waste frying oil (WFO). Isopropanol as an acyl-acceptor reduced the catalytic capability of the biomasses, while methanol was the most potent acyl-acceptor with a final fatty acid methyl ester (FAME) concentration of 85.5 and 89.7%, w/w, for R. stolonifer and A. flavus, respectively. Different mixtures of the fungal biomasses were tested, and higher proportions of A. flavus biomass improved the mixture's catalytic capability. C. sorokiniana cultivated in synthetic wastewater was used as feedstock to cultivate A. flavus. The biomass produced had the same catalytic capability as the biomass produced in the control culture medium. Response surface methodology (RSM) was adopted using central composite design (CCD) to optimize the A. flavus biomass catalytic transesterification reaction, where temperature, methanol concentration, and biomass concentration were selected for optimization. The significance of the model was verified, and the suggested optimum reaction conditions were 25.5 °C, 250 RPM agitation with 14%, w/w, biomass, 3 mol/L methanol, and a reaction duration of 24 h. The suggested optimum conditions were tested to validate the model and a final FAME concentration of 95.53%. w/w was detected.</p><p><strong>Conclusion: </strong>Biomasses cocktails might be a legitimate possibility to provide a cheaper technical solution for industrial applications than immobilized enzymes. The use of fungal biomass cultivated on the microalgae recovered from wastewater treatment for the catalysis of transesterification reaction provides an additional piece of the puzzle of biorefinery. Optimizing the transesterification reaction led to a valid prediction model with a final FAME concentration of 95.53%, w/w.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pamela Vrabl, Maria Zottele, Lucia Colleselli, Christoph Walter Schinagl, Laura Mayerhofer, Bianka Siewert, Hermann Strasser
{"title":"Light in the box-photobiological examination chamber with light trap ventilation system for studying fungal surface cultures illustrated with Metarhizium brunneum and Beauveria brongniartii.","authors":"Pamela Vrabl, Maria Zottele, Lucia Colleselli, Christoph Walter Schinagl, Laura Mayerhofer, Bianka Siewert, Hermann Strasser","doi":"10.1186/s40694-023-00159-w","DOIUrl":"10.1186/s40694-023-00159-w","url":null,"abstract":"<p><p>Due to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λ<sub>peak</sub> = 635 nm), green light (λ<sub>peak</sub> = 519 nm) or blue light (λ<sub>peak</sub> = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm<sup>-2</sup>, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm<sup>-2</sup>, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm<sup>-2</sup>. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9955125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Revanna Ashwin, Davis Joseph Bagyaraj, Basavaiah Mohan Raju
{"title":"Ameliorating the drought stress tolerance of a susceptible soybean cultivar, MAUS 2 through dual inoculation with selected rhizobia and AM fungus.","authors":"Revanna Ashwin, Davis Joseph Bagyaraj, Basavaiah Mohan Raju","doi":"10.1186/s40694-023-00157-y","DOIUrl":"https://doi.org/10.1186/s40694-023-00157-y","url":null,"abstract":"<p><strong>Background: </strong>Drought stress is currently the primary abiotic stress factor for crop loss worldwide. Although drought stress reduces the crop yield significantly, species and genotypes differ in their stress response; some tolerate the stress effect while others not. In several systems, it has been shown that, some of the beneficial soil microbes ameliorate the stress effect and thereby, minimizing yield losses under stress conditions. Realizing the importance of beneficial soil microbes, a field experiment was conducted to study the effect of selected microbial inoculants namely, N-fixing bacteria, Bradyrhizobium liaoningense and P-supplying arbuscular mycorrhizal fungus, Ambispora leptoticha on growth and performance of a drought susceptible and high yielding soybean cultivar, MAUS 2 under drought condition.</p><p><strong>Results: </strong>Drought stress imposed during flowering and pod filling stages showed that, dual inoculation consisting of B. liaoningense and A. leptoticha improved the physiological and biometric characteristics including nutrient uptake and yield under drought conditions. Inoculated plants showed an increased number of pods and pod weight per plant by 19% and 34% respectively, while the number of seeds and seed weight per plant increased by 17% and 32% respectively over un-inoculated plants under drought stress condition. Further, the inoculated plants showed higher chlorophyll and osmolyte content, higher detoxifying enzyme activity, and higher cell viability because of less membrane damage compared to un-inoculated plants under stress condition. In addition, they also showed higher water use efficiency coupled with more nutrients accumulation besides exhibiting higher load of beneficial microbes.</p><p><strong>Conclusion: </strong>Dual inoculation of soybean plants with beneficial microbes would alleviate the drought stress effects, thereby allowing normal plants' growth under stress condition. The study therefore, infers that AM fungal and rhizobia inoculation seems to be necessary when soybean is to be cultivated under drought or water limiting conditions.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9418919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Putting Fungal Biology and Biotechnology to the test.","authors":"Vera Meyer, Alexander Idnurm","doi":"10.1186/s40694-023-00156-z","DOIUrl":"https://doi.org/10.1186/s40694-023-00156-z","url":null,"abstract":"","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9772223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical response of fungi to changing moisture content.","authors":"Neil Phillips, Antoni Gandia, Andrew Adamatzky","doi":"10.1186/s40694-023-00155-0","DOIUrl":"https://doi.org/10.1186/s40694-023-00155-0","url":null,"abstract":"<p><p>Mycelium-bound composites are potential alternatives to conventional materials for a variety of applications, including thermal and acoustic building panels and product packaging. If the reactions of live mycelium to environmental conditions and stimuli are taken into account, it is possible to create functioning fungal materials. Thus, active building components, sensory wearables, etc. might be created. This research describes the electrical sensitivity of fungus to changes in the moisture content of a mycelium-bound composite. Trains of electrical spikes initiate spontaneously in fresh mycelium-bound composites with a moisture content between [Formula: see text] 95% and [Formula: see text] 65%, and between [Formula: see text] 15% and [Formula: see text] 5% when partially dried. When the surfaces of mycelium-bound composites were partially or totally encased with an impermeable layer, increased electrical activity was observed. In fresh mycelium-bound composites, electrical spikes were seen both spontaneously and when induced by water droplets on the surface. Also explored is the link between electrical activity and electrode depth. Future designs of smart buildings, wearables, fungi-based sensors, and unconventional computer systems may benefit from fungi configurations and biofabrication flexibility.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9251884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mihail Besleaga, Gabriel A Vignolle, Julian Kopp, Oliver Spadiut, Robert L Mach, Astrid R Mach-Aigner, Christian Zimmermann
{"title":"Evaluation of reference genes for transcript analyses in Komagataella phaffii (Pichia pastoris).","authors":"Mihail Besleaga, Gabriel A Vignolle, Julian Kopp, Oliver Spadiut, Robert L Mach, Astrid R Mach-Aigner, Christian Zimmermann","doi":"10.1186/s40694-023-00154-1","DOIUrl":"https://doi.org/10.1186/s40694-023-00154-1","url":null,"abstract":"<p><strong>Background: </strong>The yeast Komagataella phaffii (Pichia pastoris) is routinely used for heterologous protein expression and is suggested as a model organism for yeast. Despite its importance and application potential, no reference gene for transcript analysis via RT-qPCR assays has been evaluated to date. In this study, we searched publicly available RNASeq data for stably expressed genes to find potential reference genes for relative transcript analysis by RT-qPCR in K. phaffii. To evaluate the applicability of these genes, we used a diverse set of samples from three different strains and a broad range of cultivation conditions. The transcript levels of 9 genes were measured and compared using commonly applied bioinformatic tools.</p><p><strong>Results: </strong>We could demonstrate that the often-used reference gene ACT1 is not very stably expressed and could identify two genes with outstandingly low transcript level fluctuations. Consequently, we suggest the two genes, RSC1, and TAF10 to be simultaneously used as reference genes in transcript analyses by RT-qPCR in K. phaffii in future RT-qPCR assays.</p><p><strong>Conclusion: </strong>The usage of ACT1 as a reference gene in RT-qPCR analysis might lead to distorted results due to the instability of its transcript levels. In this study, we evaluated the transcript levels of several genes and found RSC1 and TAF10 to be extremely stable. Using these genes holds the promise for reliable RT-qPCR results.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9277518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khadiga Amr, Nehal Ibrahim, Ahmed M Elissawy, Abdel Nasser B Singab
{"title":"Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review.","authors":"Khadiga Amr, Nehal Ibrahim, Ahmed M Elissawy, Abdel Nasser B Singab","doi":"10.1186/s40694-023-00153-2","DOIUrl":"https://doi.org/10.1186/s40694-023-00153-2","url":null,"abstract":"<p><p>Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
El-Sayed M El-Morsy, Yomna S Elmalahy, Mohamed M A Mousa
{"title":"Biocontrol of Fusarium equiseti using chitosan nanoparticles combined with Trichoderma longibrachiatum and Penicillium polonicum.","authors":"El-Sayed M El-Morsy, Yomna S Elmalahy, Mohamed M A Mousa","doi":"10.1186/s40694-023-00151-4","DOIUrl":"https://doi.org/10.1186/s40694-023-00151-4","url":null,"abstract":"<p><p>A safe and ecofriendly biocontrol of pathogenic Fusarium equiseti was developed based on chitosan nanoparticles (CNPs) combined with Trichoderma longibrachiatum and Penicillium polonicum. Two strains of F. equiseti which were isolated from wilting tomato plant as well as three antagonistic fungi including Trichoderma longibrachiatum and two strains of Penicillium polonicum were isolated from the surrounding soil. All the isolated pathogenic and antagonistic fungi were identified using genomic DNA sequences. The antifungal activity of the three antagonistic fungi were studied against the two strains of F. equiseti. Also, CNPs which were prepared according to the ionic gelation method using sodium tripolyphosphate anions in acetic acid solution were used to enhance the antifungal activity of the three antagonistic fungi. The results exhibit that, combination of T. longibrachiatum with CNPs and P. polonicum with CNPs achieve high antifungal activity against F. equiseti by an inhibition rate equal to 71.05% and 66.7%, respectively.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10665839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leo Kirchgaessner, Jacob M Wurlitzer, Paula S Seibold, Malik Rakhmanov, Markus Gressler
{"title":"A genetic tool to express long fungal biosynthetic genes.","authors":"Leo Kirchgaessner, Jacob M Wurlitzer, Paula S Seibold, Malik Rakhmanov, Markus Gressler","doi":"10.1186/s40694-023-00152-3","DOIUrl":"https://doi.org/10.1186/s40694-023-00152-3","url":null,"abstract":"<p><strong>Background: </strong>Secondary metabolites (SMs) from mushroom-forming fungi (Basidiomycota) and early diverging fungi (EDF) such as Mucoromycota are scarcely investigated. In many cases, production of SMs is induced by unknown stress factors or is accompanied by seasonable developmental changes on fungal morphology. Moreover, many of these fungi are considered as non-culturable under laboratory conditions which impedes investigation into SM. In the post-genomic era, numerous novel SM genes have been identified especially from EDF. As most of them encode multi-module enzymes, these genes are usually long which limits cloning and heterologous expression in traditional hosts.</p><p><strong>Results: </strong>An expression system in Aspergillus niger is presented that is suitable for the production of SMs from both Basidiomycota and EDF. The akuB gene was deleted in the expression host A. niger ATNT∆pyrG, resulting in a deficient nonhomologous end-joining repair mechanism which in turn facilitates the targeted gene deletion via homologous recombination. The ∆akuB mutant tLK01 served as a platform to integrate overlapping DNA fragments of long SM genes into the fwnA locus required for the black pigmentation of conidia. This enables an easy discrimination of correct transformants by screening the transformation plates for fawn-colored colonies. Expression of the gene of interest (GOI) is induced dose-dependently by addition of doxycycline and is enhanced by the dual TetON/terrein synthase promoter system (ATNT) from Aspergillus terreus. We show that the 8 kb polyketide synthase gene lpaA from the basidiomycete Laetiporus sulphureus is correctly assembled from five overlapping DNA fragments and laetiporic acids are produced. In a second approach, we expressed the yet uncharacterized > 20 kb nonribosomal peptide synthetase gene calA from the EDF Mortierella alpina. Gene expression and subsequent LC-MS/MS analysis of mycelial extracts revealed the production of the antimycobacterial compound calpinactam. This is the first report on the heterologous production of a full-length SM multidomain enzyme from EDF.</p><p><strong>Conclusions: </strong>The system allows the assembly, targeted integration and expression of genes of > 20 kb size in A. niger in one single step. The system is suitable for evolutionary distantly related SM genes from both Basidiomycota and EDF. This uncovers new SM resources including genetically intractable or non-culturable fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"10 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}