Advances in microbial physiology最新文献

筛选
英文 中文
Utilisation of low methane concentrations by methanotrophs. 甲烷营养体对低浓度甲烷的利用。
Advances in microbial physiology Pub Date : 2024-01-01 Epub Date: 2024-05-27 DOI: 10.1016/bs.ampbs.2024.04.005
Lian He, Mary E Lidstrom
{"title":"Utilisation of low methane concentrations by methanotrophs.","authors":"Lian He, Mary E Lidstrom","doi":"10.1016/bs.ampbs.2024.04.005","DOIUrl":"10.1016/bs.ampbs.2024.04.005","url":null,"abstract":"<p><p>The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O<sub>2</sub>. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.</p>","PeriodicalId":519928,"journal":{"name":"Advances in microbial physiology","volume":"85 ","pages":"57-96"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. 细菌有机磷循环的新见解:从人类病原体到环境细菌
Advances in microbial physiology Pub Date : 2024-01-01 Epub Date: 2024-03-06 DOI: 10.1016/bs.ampbs.2023.12.003
Ian D E A Lidbury, Andrew Hitchcock, Sophie R M Groenhof, Alex N Connolly, Laila Moushtaq
{"title":"New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria.","authors":"Ian D E A Lidbury, Andrew Hitchcock, Sophie R M Groenhof, Alex N Connolly, Laila Moushtaq","doi":"10.1016/bs.ampbs.2023.12.003","DOIUrl":"10.1016/bs.ampbs.2023.12.003","url":null,"abstract":"<p><p>In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.</p>","PeriodicalId":519928,"journal":{"name":"Advances in microbial physiology","volume":"84 ","pages":"1-49"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信